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Activated rate processes in a double well coupled to a slow harmonic mode: Finite-barrier effects

Alexander N. Drozdov and Peter Talkner
Paul Scherrer Institute, CH-5232 Villigen, Switzerland
(Received 15 May 1996

Activated rate processes of a reactive coordinate in a symmetric double well coupled to a harmonic mode are
studied in the limit of large damping. The transition rate is given by the least nonvanishing eigenvalue of the
corresponding two-dimensional Smoluchowski equation. This eigenvalue is numerically determined for four
different temperatures and various different coupling and anisotropy parameters and compared with the value
of the Rayleigh quotient for the trial function following from the Kramers-Langer theory. Deviations between
the numerically exact rates and Kramers-Langer theory are due to finite-barrier heights and may become very
large in the case of a slow harmonic mode, i.e., large anisotropy. As long as these deviations are not too large,
the rate expression obtained from the Rayleigh quotient is in excellent agreement with the numerically exact
results. The stochastic separatrix is numerically determined as the node of the eigenfunction corresponding to
the least nonvanishing eigenvalue and compared to results from a perturbation theory.
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[. INTRODUCTION charge-transfer reactions in polar solvefiig]. There the
relaxation time of the solvent polarization may be very dif-

The thermally activated escape over a barrier representsfarent from the one of the reactive coordinate. Within a
decisive step in the dynamics of various processes in physimple model, the polarization is described by a single sol-
ics, chemistry, and biologjl,2]. The role of the interaction Vvation coordinate/, which couples to the reactive coordinate
of the considered system with a surrounding heat bath wax through the potential of mean fora4x,y), reading
recognized and fully taken into account for a simple model
by Kramers[1]. He considered a single mechanical particle V(x,y)=U(x) + E[y—y q(x)]2 1)
in a bistable potential that interacts with a heat bath. The heat ' 2 € ’
bath causes a velocity proportional friction force and a ran-
dom force, the former extracting and the latter supplyingwhereU(x) is a double-well potentialye(x) is the equilib-
energy. The correlation time of the random force is supposefium polarization at the given valueof the reactive coordi-
to be vanishingly small such that a Markovian process resultgate, and’ is the coupling constant. When the motion of the
for the considered system. This assumption is not always méemaining degrees of freedom that make up the heat bath at
in physical applications. Therefore, generalizations totemperaturg3~" are fast, the dynamics can be modeled in
higher-dimensional3—6] and non-Markoviarj7,8] systems terms of the coupled Langevin equations
have been put forth. All these theories, which will be sub-

sumed under the name Kramers-Langer theory, are generali- X=— 0 V(X,Y) = mX+ 27,/ BEL(D),
zations of Kramers'’s spatial diffusion regime where the cou- )
pling of the system to the bath is strong enough such that y=—aV(x,y)— nyy+2n,/Bf,(1), (2

energy is efficiently exchanged between system and bath.

Energy diffusion limited rates for generalized LangevinWheren, and s, are the damping constants in the directions
equations are treated in RdB] and for multidimensional of the reaction and solvation coordinates, respectively, and
problems in[10], but will not be considered here. The fx(t) and fy(t) are independent Gaussian white random
Kramers-Langer theory is correct, when the barrier heighforces with zero mean values

V* is large compared to the thermal eneggy*. The actual

value of 8V* for which it applies depends on the considered (F(0) =(Fy(0) =(Fx(OFy(5)) =0,
system. In particular, the presence of other small or large _ ooy
parameters may render the Kramers-Langer theory inappli- (F(OT(8) = (fy(DF(s)=d(t—s). 3)

cable for all physically relevant barrier heights as has bee
found for a model with exponential memory friction for both
a large bath correlation time and large static frictj@nl1].

A generalization of this model has been put forth for

h the limit of large damping constantg, and »,, the ve-

locitiesx andy relax fast and a two-dimensional Markovian
process results that is governed by a Smoluchowski equation.

It reads
. o S HP(x,y,t)=LP(x,y,t), 4
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¢ is the smallest parameter and the couplings finite but
not too large, a slow one-dimensional motion in {hdirec-
tion in an effective double-well potential results, which has a

20 smaller barrier height than the bare potenfig]. The long-

v/D time behavior is then also governed by a single Arrhenius-
type eigenvalue but with a smaller activation energy than
that following from the bare potential. Another extreme case

0 occurs if the coupling constant approaches zero first. Then
they coordinate is also slow and a densely spaced spectrum

15 of almost equidistant eigenvalues determines the long-time

behavior. In particular, the breakdown of the Kramers-
4 Langer theory in the anisotropic friction limit was discussed
in a number of papergl4—17.

In this paper, we compare numerically exact least eigen-

values with results from the Rayleigh quotient for Kramers-

FIG. 1. Potential surfac¥/(x,y)/D [Eq. (5)] and its equipoten- Langer-type trial functions. In this way finite barrier correc-
tial lines for D=0.05 andy=0.05. tions are systematically studied. This leads to much better
results for all cases where the relative deviation between the
denotes the Smoluchowski operator. Here dimensionleg§éramers-Langer rate and the numerically exact rate is less
variables have been introduced. In particular, time is meathan approximately 50%. In cases where the Kramers-

sured in units ofn;l, &= 14/, denotes the anisotropy pa- Langer theory fails completely the finite-barrier corrections

rameter, and is a dimensioniess temperature. also do not yield valid results. By means of a perturbation
In another papeir13], we have studied this model for the theqry the Kramers-Langer trial functhn systematlcglly can
potential be improved[18,19. While the node line of the original

Kramers-Langer trial function coincides with the determinis-

v 5 tic separatrix at the saddle, the node line of the improved
VX y)=Ux)+5(y=x)% trial function better approximates the true stochastic separa-
trix [20].
1 1 Before closing this Introduction we note that the problem
Ux)= ZX4_ EXZ’ (6) of finite-barrier corrections for the rate actively has been

studied in recent years and many different methods have
been suggested for their evaluati@)19,21-23 In this pa-

fer, we will use a perturbation expansion in combination

with the Rayleigh quotienf19]. The central advantages of

%Ts approach are that, first, it yields approximate eigenvalues
at possess the property of being an upper bound, second, it
llows one to systematically construct perturbation correc-

ions to the conventional Kramers-Langer trial function, and,

gineenn\gllrjgtim ct)(f) ttr:f gtrzilrulshgafslzf (t)hirlaegit S:f?r:/:g'?nhmgthird, a first-order error in the trial function leads to a second-
g ! P order error in the estimate for the rate. The paper is orga-

(5). Using a suitable set of basis functions, this eigenvaluenized as follows. In Sec. Il the Ravleigh quotient and the
has been calculated ji 3] for different values of the reduced bati h : : d yh gh quot | hod i
barrier heightg, dimensionless coupling constaptand an- perturbation theory are presented. The numerical method is

) . . reviewed in Sec. lll and the results are compared in Sec. IV.
isotropy parametet. A comparison of the numerically exact Section V ends the paper with an outlook

least eigenvalue and the result from the Kramers-Langer '
theory shows good agreement when the coupling parameter Il. PERTURBATION THEORY
v is large. If y is of the order ofU”(x=1) or smaller and

E=10 or smaller the agreement becomes worse. In particu-

lar, ‘I’;’hﬁ” I:he anlsolfropy pahrameteraddlltmrl]algl bekcodmes viewed within the scope of the Rayleigh quotient method and
small the Kramers-Langer theory completely breaks down. yq 5 perturbation theory for the Kramers function is devel-
The mathematical reason for this breakdown is the pres:

ence of up to three small parametérs, andy. Though the oped.

limit of the least eigenvalue is always zero, independently of A. Langer’s formula

the order in which the parameteB,e, and y vanish, the S
asymptotic behavior crucially depends on the relative order AS We have already noted, we treat the equilibration pro-

of these parameters. If, for example, the diffusion constant€SS ©f the considered system by means of the eigenvalue-

D is the smallest parameter, the smallest nonvanishing eigelﬁ’—mblem of the Smoluchowski operator defined (by, that

value is well separated from the others and given by the>

Kramers-Langer expression for the transition rate between LP-(X.V)= — \-P.(x 7
the two metastable states of the potential. It consequently is n(X.Y) nPn(X.Y). 0

of Arrhenius type with an activation energy given by the It is well known[24] that a process governed by a Smolu-
barrier height at the saddle point. If, however, the anisotropyhowski equation obeys strict detailed balance, i.e.,

which has two minima at{1,—1) and (1,1) and a saddle
point at the origin. The barrier height measured in units o
the thermal energy of the bath @&/*=E=(4D) 1. A typi-
cal shape of the potential surface and its equipotential line
are shown in Fig. 1.

For most of the parameter values the transition rate fro

In this section the Kramers-Langer theory is briefly re-
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L(Pof)=PoL*f (8)  where
for any smooth functiorf, where Ly =[(1—y)x+ yyldx+Dig,+ey(x—y)dy+eDd,
(16)
Po(x,y)zexp[—V(x,y)/D}/ f,wdx dy describes the linear dynamics near the saddle and
X exp{—V(x,y)/D} 9) Ly =—x% 17)
denotes the equilibrium distribution satisfyitg?,=0 and the anharmonic correction. In passing we note that rescaling
L* denotes the backward operator the coordinatex andy by the inverse square root of the
barrier height renders the leading contributiogi indepen-
L*=De""®(9,e VP, +edyeVPg,). (100 dent of the diffusion constar? and the correctio.; pro-

portional to the inverse barrier height. Hence the inverse bar-
rier height may be considered as the formal smallness
parameter in the following perturbation theory. The solution
of the unperturbed problem

As a consequence @B), L* is a Hermitian operator with
respect to the scalar product of functiorigx,y) and
g(x,y) defined by

@0 dx ayRoygn o). an L§ Q=0 19

_ _is known from the Kramers-Langer theory. It reads
Therefore, a complete orthogonal set of eigenfunctions

{Q,} exists with corresponding real eigenvaluesthat are 2 (B(wx+y)
non-negative 24] Quo(x,y)= ;J; duexp{—u%2}, (19

(anQm):5n,m- where

L+Qn:_7\nQn- (12 K
. . . b= =——, (20
Equation(8) further entails that. has the same eigenvalues D(e+w?)

A, with the corresponding eigenfunctioRs,=Q,P,. Obvi-
ously, Qy=1 is an eigenfunction with corresponding eigen- _ K 21)
value\y=0.

Here we are interested mainly in the least nonvanishing
eigenvalue\ ; (for notational simplicity we will drop from and
here on the index 1 whenever no confusion may ariser

o . , 1
this eigenvalue, the Rayleigh quotient = 5{1_ y—ye+[(1—y—ye)2+4ye V2. (22)

(QL7Q) _ o .
A=— Q.0 (13 The result of Eq(19) used as a trial function in the Rayleigh

quotient yields, in leading order D,
provides an upper bound @ is orthogonal orQq,=1, i.e.,
(Q,1)=0. In order to construct a trial function we use the
fact that the least eigenvalue is small and hence may be
neglected in the eigenvalue problem, i.e.,

AKngkexp{—E}. (23
This coincides with twice the Kramers-Langer redéand is
L*Q=0. (14)  therefore distinguished from the other expressions for the
eigenvalue by the subscript KL.
For vanishing diffusion the resulting first-order partial differ- ~ Now, let us briefly analyze the dependence\gf on the
ential equation has only solutions that are piecewise constagbupling constant and anisotropy parameter. These param-
on the domains of attraction of the deterministic equations otters enter23) only through the transmission fact¢22).
motion. We choose these values as being and—1, such  This factor tends to unity for all positive’s if the anisotropy
that the resulting function is orthogonal on the overall con-parameter goes to infinity. Note that in the original units of
stant function. The presence of small diffusive termd.in  (2) for fixed 7y the rate tends to zero aszi/with increasing
changes the behavior 6 only near the deterministic sepa- 7,. On the other hand, in the limit of vanishingly small
ratrix where the steplike behavior is smoothed out. Since thanisotropy parameterén the following this limiting case
Rayleigh quotient contains the stationary distribution as awill be referred to asstrongly anisotropiclimit) there are
weight, only the region of the saddle point is of importancethree regimes with a different dependence \g§ on ¢.
for sufficiently smallD. Hence we may split the backward When y is larger than unity,\y, is linear in ¢, i.e.,
operator into a leading contributiohy and a correction x=~gy/(y—1). At y=1 it also tends to zero as the square
L, reading root of e, A~ Ve. Finally, if the coupling constant is less
than unity, the transmission factor tends to the finite value
L*=Lo+Ly, (15  k=1- 1. This, however, does not coincide with the behav-
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ior of the least nonvanishing eigenvalue, which must always o

linearly vanish withe [13]. Thus one may expect consider- 9 J_wdxexp{—(x4+ 2x%la+1)/4D}
able deviations of the Kramers-Langer theory from numeri- (D=

cally exact results in the limit—0 for all positive y<1. WNO\/Z fm dxexp{— (x2— 1)2/4D}
Therefore, much of the work dealing with activated rate pro- —w

cesses in systems coupled to slow harmonic mgti&d 6 is (27
concerned with estimates for the rate in the limit of vanish-
ingly small e.

Our results of Ref[13] show first, thaty=1 is not a strict
limit of validity of the Kramers-Langer theory—rather, the
latter fails for sufficiently smalle also if y is larger than a=1+2Db/y. (28)
unity, and, second, that the Kramers-Langer theory also fails
near the isotropic case~1 if the barrier height is not too If D<0.05 the scalar produdt, can be approximated by
large andy is of order unity. We also found that the theory unity. The error of this approximation is of the order
may break down even far>1 due to the smallness of the D exp—4/D. If, further, «?D=<0.1 one can simplify the
coupling constant. In this limit the transmission factoin above formula by deexponentiating éxp*/4D} and keep-
(23) approaches unity corresponding to the motion in theing only terms that contribute up to first order n (in the
bare reactive potentidl(x) and does not reflect the slow inverse barrier height
relaxation of they coordinate on the time scalg™ . This

where

case is not particularly interesting since then the reactive x4 x4
system is practically decoupled from the extremely skpw exp — —t=1— —+
mode. 4D 4D

In those cases when the reactive mode determines the
long-time dynamics the observed deviations of the rate fromn the indicated parameter regime the error of this approxi-
the Kramers-Langer theory are due to the fact that the triamation is at most 2%. The integrations can be performed
function (19) only is exact for a parabolic barrier and that analytically, yielding the expression
also anharmonic contributions that are contained in the
weight of the scalar produ€13) are neglected; see al§bl).

. (29

3
)\RQ: }\KL|: 1- ZD(1+ az)
B. Finite-barrier corrections

Based on the decomposition of the backward operator _ . .
(15), a perturbation theory for the trial function can be per-Where the index RQ indicates the result of the Rayleigh quo-

; : tient up to first order irD. Note that according to its defini-
formed leading to the series representafiv®,1 ) )
g P i 3 tion (20) b, and consequently, diverges aty=1 and

Q(X,¥)=Q(0)(X,¥) + Q1)(X,y) + Q2)(x,y) + - - -, (24 &=0. Further, it must be pointed out that the bounding prop-
erty of the Rayleigh quotient may be lost both whdg is
approximated by unity and when the numerator and the de-

whereQp(x,y) is determined by19), while all higher con-  nominator of(27) are asymptotically evaluated.
tributions recursively follow from a hierarchy of inhomoge-  Next, we determine the first-order corrections of the
neous equations of the form Kramers-Langer trial functiof19) with the aim of finding
. N the precise location of the stochastic separatrix in the vicinity
Lo Quo(x.¥)=—L1 Qu-1(Xy), k=1. (29 of the saddle point. For this purpose it is convenient to split

. . . . off a Gaussian function fro ,
Inserting(24) into (13), we find the estimate of the rate Q)

N L1 Q- Ly [2b 1
(kD (0 kt1 (Quosb1Qu-1)  (Quo 1Q(k))’ Quy(x.y)= ?F(x,y)eXp[—zb(wquy)z .

Ni Nic+1 Nic+1

(30

Nk=(Quo)* -+ +Quy»Quoyt -~ +Quo)s (200 Then Eq.(25) yields

whereX(®=0, Q_1,=0, andNy=(Q(0).Q(0)). The result
A® is correct up to order R— 1 in the perturbation, i.e., up [Lo —2bD(wx+Y)(dx+edy)—k]F=wx>.  (31)
to the ordeiE ~2<"1, Usually, one argues that all, are unity
up to exponentially small corrections in the barrier height,The ahove equation can exactly be solved by expanidiirg
and therefore can be neglected. We will see in the followingyoers ofx andy,
that for low barrier heights these corrections also become
important. Note that alA¥ represent upper bounds of the
true eigenvalue ;.

In the present paper, we will not go beyond first order in
the perturbatiorl; . It is not difficult to obtain the rate in- Inserting (32) into (31) and equating like powers ir and
cluding the first correction y gives

F(x,y)=Ax+By+Cx3+Gx’y+Rxy’+Sy’. (32
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K+ 3eya lll. BASIS SET METHOD
 y—2bw ™ In this section a basis set method for numerically solving
time-independent Smoluchowski and Salinger equations
_ k—1l+y+2eyat 2bw? 3 is developed. The method is very efficient in dealing with a
- 2(y—2bw) R- 585' so-called system-bath situation in which a nonlinear degree
of freedom couples to a harmonic bath. For the sake of gen-
k—2+2y+eya+dbw? 2 erality, we consider a harmonic bath with an arbitrary num-
= eR, ber of modedN governed by the Smoluchowski operator

3(y—2bw) G-3

(1— y— k—2bwW?)(2G+6eS)— (y—2bw)(2e R+ 6C)
e(y—2bw)?+(1— y— k—2bw?)(k+ & ya)

B=

(kteya)B—2G—6&S
y—2bw

2
s=w(y—2bw)( 3e(k+3eya)(k+ 3y—3+6bw?)

N
L=D| a,e Va,e"P+ > g9 VPse"P|,
=1

1 N
VO =U00+ 52 %(yi=x)?, (38)

wherey'=(yy, ... yn), 4=4dy, ands;= 7,/ 7, First we
transform(38) by means of the ansatz

+[(k+3eya)(k+2y—1+2eya+2bw? V(X,Y)
L velt 7 7 : P(x,y)=z!f(x,y)exp{ T (39
—3e(y—2bw)?]| = _ o
2 into a Hamiltonian operator of the form
(k+3y—3+6bwW?)(k+2y—2+eya+4bw?)]] ! H=H,+Hp+H,y
— X xbs
6(y—2bw)? '
U/2 u”
(33 Hx:_Daix_'— E_ 71
Hence, in first-order perturbation theory the trial function
reads N ¥? ¥i
I I
Hp=2, & _D(9ﬁ+ﬁ(yi_x)2_§},
2b| [wx+y b i=1
Q(x,y)= \/—{f duexp{——uz]
aw 0 2 N 1
b Hxo= 2, 551U (0 %i(x=y) = D]
+F(x,y)ex% - E(wx+y)2H. (34) =1
1 N 2
By definition, the probabilities of going in either direction VT 2’1 YilX=Yi) | - (40

of reactants and products are equal for trajectories that start

from the stochastic separatrix. One can stia®,20 that the  This transformation allows us to take advantage of the fact
stochastic separatrix coincides with the node line of thehat the matrix representation of a Hamiltonian operator is

eigenfunction belonging to the least nonvanishing eigenvalugymmetric. The underlying idea is to determine the generic
provided it is the relevant eigenvalue characterizing the conpasis function element as

sidered transition. Using for the eigenfunction the re€adj,
we obtain as an equation for the stochastic separatrix

Q(X,ys9=0.

This equation can be solved fggg numerically. In the vi-
cinity of the origin an approximate analysis yields

N
Yom=Xm(O L1 n (v =), (41)

(39

where the productﬂicpni(yi—x) are eigenfunctions of the

bath HamiltonianH,, which are given by a set of displaced

harmonic oscillators
Ysd X)=—(A+w—Bw)x+(C— Gw+RwW—Sw?)x3,

(36 2

{—Daﬁ+Z—D(yi—x)2—§ (42

L L . . - ani:’YiniQDni!
By contrast, the deterministic separatrix is given in the vicin-

ity of the saddle point by the straight line
y P y ¢ while y,(x) are the eigenfunctions of the Hamiltonian op-

(37) erator corresponding to thencoupledreactive subsystem
which also has a slope different from that of the stochastic
separatrix ak=0.

Yps(X) =~ WX,

U/2 u”

(_D(9>2<X+E_7)Xm:l’«m)(m- (43
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TABLE I. Comparison between Langer’s formulg, [Eq. (23], the Rayleigh quotient evaluated in the steepest-descent approximation
Aro [EQ. (29)] [a bar— indicates a negative valliethe full Rayleigh quotienk™ [Eq. (27)], and the numerically exact resuktsfor the
least nonvanishing eigenvalue of the Smoluchowski oper@porExponential notatiorf —k] means that the preceding number is to be
multiplied by 107,

E=25 E=5

Y & AL Aro A A kL Aro NoA () A

0.5 0.1-2] 0.18§-1] 0.157-1] 0.140-1] 0.6929-4] 0.157-2] 0.140-2] 0.122-2] 0.1497-4]
0.5 0.1-1] 0.187-1] 0.473-2] 0.147-1] 0676§—3] 0.153-2] 0.96Q—3] 0.123-2] 0.1364-3]
0.5 0.1 0.20p—1] 0.569-2] 0.16Q-1] 0.5529-2] 0.164-2] 0.106—2] 0.137-2] 0.7853-3]
0.5 1 0.260—1] 0.129-1] 0.234-1] 0.2046—1] 0.214-2] 0.15§-2] 0.192-2] 0.1839-2]
0.5 10 0.341-1] 0.264-1] 0.321-1] 0.307§—-1] 0.280—2] 0.24§-2] 0.256-2] 0.2553-2]
05 100 0.366—1] 0.31-1] 0.347-1] 0.332]1-1] 0.30G—2] 0.277-2] 0.276—2] 0.2749-72]
1 0.1-2] 0.115-2] 0974-3] 0.335-3] 0568¢—-4] 0944—4] 0.873-4] 0.329-4] 0.7107-5]
1 0.1-1] 0.351-2] 0.171-2] 05567-3] 0.289-3] 0.162-3] 0.681]—4]
1 0.1 0.998-2] 0.728 2] 0.464§-2] 0.819-3] 0.647-3] 0.4977-3]
1 1 0.228—1] 0.27g—2] 0.20Z-1] 0.1904—1] 0.187-2] 0.105-2] 0.16§-2] 0.1645-2]
1 10 0.339—1] 0.267-1] 0.317-1] 0.3065-1] 0.27§-2] 0.249-2] 0.255-2] 0.2539-2]
1 100 0.366—1] 0.310—1] 0.339—1] 0.3321—-1] 0.30Q-2] 0.277-2] 0.276-2] 0.2748-2]
1.5 0.1-2] 0.11-3] 0.934-4] 0.704—4] 0.4963—4] 0.907-5] 0.834-5] 0.643—-5] 0.5133-5]
15 0.1-1] 0.107-2] 0.679—3] 0.4876—3] 0.83§-4] 0.429-5] 0.617—4] 0.4998—4]
15 0.1 0.66[— 2] 0.516-2] 0.4173-2] 054§-3] 0.12§-3] 0.452-3] 0.401§-3]
15 1 0.215—1] 0.880—2] 0.191-1] 0.1839-1] 0.176—2] 0.124-2] 0.159-2] 0.1566—2]
1.5 10 0.338—1] 0.277-1] 0.31Q-1] 0.3060—1] 0.277-2] 0.250—2] 0.254-2] 0.2534-2]
1.5 100 0.366—1] 0.31-1] 0.337-1] 0.332]-1] 0.300—2] 0.27§-2] 0.276-2] 0.274§-2]
2 0.1-2] 0.736-4] 0.626—4] 0.551-4] 0.4559-4] 0.604—-5] 0.559-5] 0.486-5] 0.4357-5]
2 0.1-1] 0.711-3] 0.183-3] 0.53§-3] 0.448§-3] 0.584—-4] 0.367—4] 0.474—-4] 0.4269—4]
2 0.1 0.548—2] 0.174-2] 0.445-2] 0.3905-2] 0.450—3] 0.296-3] 0.384—3] 0.358]—3]
2 1 0.208—1] 0.121-1] 0.18§-—1] 0.1803-1] 0.17q-2] 0.135-2] 0.154-2] 0.1524-2]
2 10 0.337-1] 0.279-1] 0.309-1] 0.3057-1] 0.277-2] 0.251-2] 0.254—-2] 0.2537-2]
2 100 0.36p—1] 0.311[-1] 0.33¢-1] 0.332]-1] 0.300[-2] 0.27§—2] 0.276-2] 0.2748-2]
3 0.1-2] 0553-4] 0479-4] 0.455-4] 0.4145-4] 0.454-5] 0.42Q0-5] 0.391-5] 0.3716-5]
3 0.1-1] 0547-3] 0.34Q0-3] 0.448-3] 0.409¢0-3] 0.445-4] 0.367-4] 0.384—4] 0.3659—4]
3 0.1 0.457-2] 0.297-2] 0.389-2] 0.362Z-2] 0.379-3] 0.307-3] 0.330—-3] 0.3183-3]
3 1 0.200—1] 0.147-1] 0.18¢-1] 0.1764—1] 0.164-2] 0.141-2] 0.149-2] 0.1480-2]
3 10 0.337-1] 0.27§-1] 0.309—-1] 0.3055-1] 0.27§-2] 0.252-2] 0.254-2] 0.2529-2]
3 100 0.366—1] 0.317-1] 0.336—1] 0.3321—1] 0.30Q-2] 0.27§-2] 0.276-2] 0.2748-2]

It is straightforward to construct the matrix representation of i .
the Hamiltonian(40) in the basig41). One obtains Opn=11 5nk,np O = H 5nk,n|;v

N where
Homn'm = #m"'Zl (1+&)viNi | Onn Smm Rm,m,=<m|eU’2D(9Xg’e’U’2D|m’>. (45)

In the present case of a single bath mode, it reads

N
+Rm/'m2 ')/,D(n|/+1)5nl ’ni/+15:1’n!
i=1 Hnm,n'm’:[Mm+(1+8)7n]5n,n’5m,m’

+ \/7D(n'+1)5n'n/+lRerm

N
+Rm’m,i21 yiDni' 5“i ,ni’—lﬁln,n’

+\yYDNn' 6, — 1R (46)
N N
+%5m‘m, 2 Vi 7][\/”((”{4‘1) This representation has the advantage that a few basis
i=1j#i

functions are sufficient to produce very accurate low-lying
eigenvalues foe=1. The method is rathansensitivewith
respect to the barrier height and the coupling constant. With
a decreasing anisotropy parameter the convergence only
slowly becomes worse. Even fexce™ E a number of 10-15

X 5ni |ni’ —15nj ,nj’+l

+y (i +1)nj 5ni,n{+15n.,n!71]5i'j (44)

i n,n’?
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basis functions pex andy are typically required regardless smaller thanE=5, the dependence of the denominator
of the coupling constant. The resulting matrices can be di{Q,Q) of the Rayleigh quotient on the detailed shape of the
agonalized by standard routines for sparse or band structuredal function Q(x,y) must be taken into account. In particu-
matrices. lar, the factorN, in the denominator of27) must not be
Now, it remains to evaluate the eigenvalyeg and the  approximated by unity. Table Il gives the scalar product
matrix elementR, ,,. For this purpose we use a complete N, for E=2.5 and various values of and y. Though the
orthonormal set of functiong), i.e., resulting corrections are “exponentially small” they do not
much differ in magnitude from the “leading” algebraic cor-
rections for low barrier heights. This indicates that the rate

[

Xm™= ZB Crnili), (47) description as a whole loses its meaning for too low barriers.
It is interesting to note that this failure may be due to the
that are eigenfunctions of threealedharmonic oscillator equilibrium properties of the system. The equilibrium distri-
bution (9) no longer allows an unambiguous definition of the
) w? , @) . populations of the different metastable sta{@9,25 al-
~Duct 15X~ 5|l =wili), (48)  though the long-time dynamics may still be governed by a

single least nonvanishing eigenvalue that is well separated
where the frequency is a free parameter that can be chosenfrom the rest of the finite eigenvalugs3].
such that the convergence of the Serie$4ﬂ) is as fast as For the parameter values that are used in Tables | and ”,
possible. Both the matrix representation of the Hamiltoniarfhe Kramers-Langer expression has its minimal error of
(43) and the method for determining are given in the Ap- about 4% forE=10 ande =10 for all values Of’y The error
pendix. Here we only note that the use of the basis of scaletifcreases with decreasirgfor all values ofy, but is stron-
harmonic oscillator eigenfunctions allows one to truncate th@est for smally. For E=10 it completely fails fory<1.5
sum in(47) at least at half of the number of terms that areande<0.1. For small values of the error of the Kramers-
necessary to converge to 12 significant digits compared tbanger rate decreases only rather slowly with increaging
the standard unscaled basis Correspondin@:ﬁ@l_ Another Finite-barrier corrections according (ﬁg) lead to a consid-
advantage of the basi&48) is that the matrix elements erable improvement in many cases. Fb=10 and y=2
Rnm Can be evaluatednalytically, that is, without loss of already the leading finite-barrier corrections agree very well
accuracy. For the potentifl(x) defined by(5) a straightfor- with the exact rates. If, however, the conditieAD <0.1 is
ward calculation yields the algebraic expression violated, the corrections i29) are not sufficient and29)
may yield even negative results. These instances are indi-
M—1 DI[3D cated by bars in Tables | and Il. Finite-barrier corrections
Rom= 2, Vi+1{/ 1o —(i+1)-1 must then be determined by means of the full Rayleigh quo-
=0 oL tient (27) includingN, for E<5, in which caséNy cannot be
X(Ch,iCmi+1+Chi+1Cm,i) approximated by unity. FE= 10 ands>0.1 Eq.(27) gives
S ’ ' excellent results for all considered valuesyoflf, however,

) vy=<1 ande=<0.01, all approximate rate expressions, includ-
N ﬁ(cnvicm,iﬂ_cnyiﬂcm,i) ing (27), strongly deviate by factors, or even by orders of
magnitude, from the numerically exact least nonvanishing
3/2M -3 .
(Dl w) : : : eigenvalue.
T b izo Vi+D)(i+2)(i+3) Note that the Kramers-Langer rate is always larger than
the Rayleigh quotient. Bothy, and\(® are larger than the
X(Chni+3CmitCniCmi+s)- (49 numerically exact least nonvanishing eigenvalue as one ex-

pects. This bounding property, however, does not hold for

NoA (), that is, if one sets, if27), No=1. This is seen from

Table 1ll, in which the producNy\ ") is shown and com-
The least nonvanishing eigenvalue and the correspondingared with the numerically exact results f6e=2.5.

eigenfunction of the two-dimensional Smoluchowski equa- The relative errors of the different approximations are dis-

tion (5) have been calculated in a wide range of parameterslayed in Fig. 2 as functions ef for various values oE and

The results for the eigenvalue are presented in Tables | and §. The relative deviation of the Kramers-Langer rate from

and compared to the Langer formu[23), the full Rayleigh  the Rayleigh quotient reading

quotient (27), and its asymptotic value including the first-

order corrections in the inverse barrier height4=E~1! NP 0

(29). As for E=5, the inequalities 0.99Ny <1 usually o= NEY X 100% (50

hold; we have sail;=1 in evaluating the full Rayleigh quo-

tient (27) for E=5, 7.5, and 10. yields a simple self-consistent criterion for the trial function
For large parameters, y, and E, all approximate rate (19). If Q(x,y) had been an exact eigenfunction, the

expressions agree well with the numerically exact least nonKramers-Langer rate and the Rayleigh quotient would coin-

vanishing eigenvalua. Large deviations are found if both cide. Figure 3 displays the curves of constanin the s-y

¢ and y are small. The region of complete failure of all plane for different values oE. The lines corresponding to

approximate expressions grows slowly towards laggand  9=20% reach their maximal values af at y<1. The

v values with decreasing barrier height. For barrier heightdranches on the right-hand side of the maxima represent a

IV. RESULTS
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TABLE Il. Same as in Table |, but foE=7.5 and 10.

E=75 E=10
Y & )\KL )\RQ No)\(l) A )\KL )\RQ No)\(l) A

05 0.1-2] 0.125-3] 0.11§-3] 0.10§-3] 0.295§—5] 0.103—4] 0.831-5] 0.90]—-5] 0.5224—6]
05 0.1-1] 0.126-3] 0.0944—4] 0.107-3] 0.2320—4] 0.103—4] 0.839-5] 0.917—5] 0.3227-5]

0.5 0.1 0.13-3] 0.103-3] 0.11§—-3] 0.8816—4] 0.111-4] 0.9190-5] 0.100—4] 0.8473—5]
0.5 1 0.176—3] 0.145-3] 0.163-3] 0.1601—3] 0.145-4] 0.126-4] 0.136—-4] 0.1352—4]
0.5 10 0.23p-3] 0.217-3] 0.217-3] 0.2161-3] 0.18§—4] 0.17§—4] 0.18§—4] 0.1804—4]
0.5 100 0.247—-3] 0.234-3] 0233-3] 0.2324-3] 0.203-4] 0.195-4] 0.194-4] 0.1939—4]
1 01-2] 0.779-5] 0.73-5] 0.304-5] 0.7839-6] 0.63G —6] 0.266 6] 0.784§—7]
1 0.1—-1] 0.237-4] 0.146—4] 0.73405] 0.194—5] 0.127-5] 0.7184—6]
1 0.1 0.678—4] 0.565—4] 0.479§—-4] 0.557—5] 0.479-5]  0.430]—5]
1 1 0.154—3] 0.109—3] 0.143-3] 0.1414-3] 0.126—4] 0.985-5] 0.119-4] 0.1189—4]
1 10 0.228—3] 0.217-3] 0216-3] 0.214§—3] 0.187-4] 0.177—-4] 0.179—4] 0.1793—4]
1 100 0.247-3] 0.234—3] 0.233-3] 02324-3] 0.20Z—4] 0.195-4] 0.194-4] 0.1939—4]

1.5 0J-2] 074G-6] 0.703—6] 0.569—6] 0.4893—6] 0.60§—7] 0.319-7] 0.48§-7] 0.4379—7]
1.5 0J-1] 068§-5 0.253-5] 0.543—5] 0.4737—-5 0.565—6] 0.34§—6] 0.464—6] 0.4215—6]
1.5 0.1 0.45D—4] 0.22G-4] 0.397—-4] 0.365[—4] 0.369-5] 0.315-5] 0.331-5] 0.3164—5]
1.5 1 0.14p—3] 0.116-3] 0.13§-3] 0.1339—-3] 0.119-4] 0.113-4] 0.113-4] 0.1123-4]
1.5 10 0.22B-3] 0.213-3] 0.215-3] 0.2143-3] 0.187—4] 0.180—4] 0.179-4] 0.1789—4]
15 100 0.247-3] 0.234-3] 0233-3] 0.2324—3] 0203-4] 0.195-4] 0.194—4] 0.1939—4]
2 0.1-2] 0.496-6] 0471-6] 0.423-6] 0.3955—6] 0.407-7] 0.33]-7] 035§-7] 0.343]-7]
2 0.41-1] 0479-5] 036G-5 0.41F-5] 0.3864-5] 0.393-6] 0.320—6] 0.34§—6] 0.3345—6]
2 0.1 0.369—4] 0.285—4] 0.330-4] 0.3173—4] 0.303-5] 0.25f—-5] 0.27§—5] 0.271F3-5]
2 1 0.140—-3] 0.120-3] 0.131—-3] 0.1299—-3] 0.115-4] 0.103-4] 0.109—4] 0.1089—4]
2 10 0.227-3] 0213-3] 0.215-3] 0.2141—3] 0.187-4] 0.17§—4] 0179-4] 0.1787—4]
2 100 0.247-3] 0.234-3] 0.233-3] 0.2324-3] 0.207—4] 0.195-4] 0.194—4] 0.1939—4]
3 0.4-2] 0.373-6] 0354-6] 0.33G-6] 0.3260—6] 0.306—7] 0.277—7] 0283-7] 0.2773—7]
3 0.4-1] 0.365-5] 032G-5 0.33Q—-5] 0.3206—5] 0.300—6] 0.273—6] 0.277-6] 0.2725—6]
3 0.1 0.308—4] 0.27]-4] 0283-4] 0.2764—4] 0253-5] 0.235-5] 0.236-5] 0.2337—5]
3 1 0.135—3] 0.127—3] 0.126—3] 0.125§—3] 0.111—4] 0.106—4] 0.109—-4] 0.1053—4]
3 10 0.227-3] 0.214-3] 0215-3] 0.2139—3] 0.18-4] 0.179-4] 0.17§—4] 0.1785—4]
3 100 0.247-3] 0.234—3] 0.233-3] 0.2324—-3] 0.207—4] 0.195-4] 0.194—4] 0.1939—4]

reliable border line of applicability of the Kramers-Langer with decreasing anisotropy parameter. Figure 6 shows that
theory and the Rayleigh quotient based on the trial functiorthe stochastic separatrixggx) becomes curved foe<1
(19). For values on the left-hand side of the maximum theand has a slope at=y=0 that is different from that of
criterion fails since the true eigenfunction differs too muchyyg(x). One also sees that the finite-barrier expansion for the
from the trial function(19). stochastic separatrig86) accounts quantitatively for this dif-
Figure 4 shows numerical results for the eigenfunctionference. Finally, with further decreasing the slope of the
Q(x,y) and its node line, which coincides with the stochasticdeterministic separatrix approaches a finite limiting value,
separatrix. We find tha@(x,y) and consequently also the namely,w=1y"1—1, in contrast to the stochastic separatrix.
stochastic separatrix rotates with decreasing anisotropy pall these peculiarities become more evident for smaller val-
rameter. It moves in a counterclockwise direction from theues ofy (see Fig. 7. For y<0.5 the Kramers-Langer func-
y axis for largee to the x axis in the strongly anisotropic tion becomes inapplicable already for=1.
limit e—0 for all values of the coupling constant. This isin  Besides the location of the node line, the shape of the trial
contrast to the behavior of the deterministic separdBi®,  function perpendicular to the node line is another important
which does not approach theaxis if y<<1. Hence we con- factor that influences the value of the Rayleigh quotient. Us-
clude that a reason for the failure of the Kramers-Langeing z=(wx+y)/(w?+ 1)¥? as a coordinate in the direction
theory is the different location of the stochastic and deteriransverse to the node, one obtains as the profile of the

ministic separatrix for small values ef Kramers-Langer function
In Fig. 5 the stochastic and the deterministic separatrices
are compared for different parameter values. They are indis- 2 (z u?
tinguishable from each other for afl if the coupling be- Q2= Ffoduex T 5520 (52)

tween the system and the nonreactive mode is sufficiently

strong, i.e.,y=U"(Xyin) =2. This is not the case foy<2. where the width reads

Then the difference between the stochastic and the determin-

istic separatrix, which is still invisible foe=10, increases o=[b(w?+1)]" 2 (52)
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TABLE Ill. Scalar productNy=(Q(o) ,Q(g)), as well as a com-

parison between the Rayleigh quotidifitq. (27)] evaluated with
No=1, NoA™Y), and the numerically exact resulis for the least ®
nonvanishing eigenvalue of the Smoluchowski operdtr for g
E=25. o
G
v € No NN A W
0.5 01-2] 092  0.130-1]  0.6929—4] <
0.5 0I-1] 092  0.13p-1] 0.676§—3] &
0.5 0.1 091  0148-1]  0.5529—-2]
0.5 1 0.90  0213-1]  0.2046—1]
0.5 10 0.89 0.288-1] 0.3078 — 1] @)
0.5 100 089  0310-1]  0.3321-1]
1 01-2] 096  0.328—3] 0.568G—4]
1 01-1 095 0.1684—2] 0.5567—3]
1 0.1 093  0.686-2]  0.4648—2] ®
1 1 092  0187-1]  0.1904—1] S
1 10 091 02871  0.3065—1] &
1 100 091  0.31p-1]  0.3321—1] "
1.5 01-2] 094  0668—4]  0.4963—4] =
1.5 01-1] 094  0.644—3]  0.4876—3] <
1.5 0.1 093  04g52] 0.4173-2] &
1.5 1 092  01771]  0.1839-1]
1.5 10 091  0296-1]  0.3060—1]
1.5 100 091  0.310-1]  0.3321—1] (b)
2 00-2] 093  0519—-4]  0.4559—4]
2 0.1-1] 0.93 0.507-3] 0.4489 — 3]
2 0.1 0.93 0.41[7- 2] 0.390% — 2]
2 1 092  017p-1]  0.1803—1] 3
2 10 092 02861  0.3057—1] &
2 100 091  0.310-1]  0.3321—1] &
3 01-2] 093  042p—4]  0.4145—4] :‘
3 00-1] 093  0420—3]  0.4090-3] =
3 0.1 093  0.363-2] 0.3622—2] <
3 1 092  0.16f-1] 0.1764—1] &
3 10 092 02861  0.3055-1]
3 100 092  0310-1] 0.3321—1]
(©)
Hereb andw are given by(20) and(21), respectively. The
width o is a function ofe andy, which tends to unity in the FIG. 2. Relative errors, 100% [(approximatg
limit e—oo for all coupling constants. Far going to zero, — (exact/(exac], for the different approximate expressions for the
the width approaches a finite value for allexcepty=1, least nonvanishing eigenvalue. The solid and the dashed lines show

whereo vanishes. Sinces simultaneously vanishes, the trial the errors of the Kramers-Langer formul&q. (23] and of the

function (19) becomes a step function jumpingyat 0: Rayleigh quotien{Eqg. (29)] including the first-order corrections,
respectively.(a) E=5 and y=2,3; (b) E=7.5 andy=1.5,2; (¢

E=10 andy=2,10.

1 if y>0
Quxy)=y 0 if y=0 (53 teresting that the shape of the true eigenfunction agrees quite
—1 otherwise. well with an error function even foy<l ande—0, i.e.,

also in cases when both the Kramers-Langer xgieand the

However, the numerically exact eigenfunctions do not showRayleigh quotient\(*) fail grossly. Figure 9 shows that in
this behavior. They rather keep a finite width for all coupling this case, the profile oQ(x,y) coincides surprisingly well
strengths in the strongly anisotropic limit. Fei>1 and all  with that given by(51) though the stochastic and the deter-
e the profile is in qualitative agreement with that of the ministic separatrices differ very mudkee Fig. 6c)]. Thus
Kramers-Langer function(51). The first-order correction one can conclude that if the coupling is not too weak
(34) quantitatively agrees with the numerical results. 0.5=y<1, the main reason for the breakdown of the

Figure 8 shows a comparison of the profiles of the nu-Kramers-Langer theory is the different location of the deter-
merically exact eigenfunctio®(x,y), the Kramers-Langer ministic and stochastic separatrices in the strongly aniso-
function (19), and the perturbation expansi¢®d4). It is in-  tropic limit and their different respective slopes at the saddle
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FIG. 5. Location of the stochastic separatrix in the vicinity of
the saddle point foE=5, y=3, ande=0.01,1,100.

the Smoluchowski operator becomes very similar to that of
the harmonic oscillator even though>1, and therefore the
rate description is inapplicable in this case.

V. CONCLUSION

In this paper we discussed the validity of the Kramers-
Langer theory by a comparison with numerical results for the
least nonvanishing eigenvalue and the corresponding eigen-
function. The investigation was performed for a reactive
mode that is coupled to a relaxation mode and a heat bath.
The dynamics of both modes are strongly damped such that
inertial effects can safely be neglected and a two-
dimensional Smoluchowski equation describes the process.
Yet the relaxation times of the reactive and the relaxational

point of the potential. Only in the limit of weak coupling modes may differ, leading to an anisotropy in the respective
vy—0 is the shape of the true eigenfunction seen to be quitdiffusion constants. Depending on the ratio of the diffusion
different from an error function following from the Kramers- constants, i.e., the anisotropy parametgethe coupling con-
Langer theonysee Fig. #)]. As we showed in another pa- stanty of the two modes, and the dimensionless temperature
per[13], with v going to zero the spectrum of eigenvalues of D of the heat bath, the system belongs to either the relax-

FIG. 4. EigenfunctionQ(x,y) corresponding to the least nonvanishing eigenvalydor E=5 andy=0.5. (a) e=10; (b) e=1; (¢
£=0.1;(d) e=0.01.
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FIG. 6. Location of the stochastic separatrix faB=5 and
vy=0.5. The solid and the dashed lines represent the numerically
exact results and the deterministic separafftq. (37)], respec-  cate that for fixed the critical value ofy where the cross-
tively. The dot-dashed lines show the perturbation expar($gs.  over takes place decreases with increasingince the tran-
(34) and(39)]. (8 e=1; (b) £=0.1; (c) £=0.01. sition rate characterizing the barrier crossing process and

hence the corresponding eigenvalue is exponentially small in
ational or the rate regime. The latter can further be subdithe inverse temperatui®, the critical value ofy must also
vided into the anisotropic and the Kramers-Langer regime. be exponentially small ifD.

The relaxational regime is characterized by a small cou- The Kramers-Langer regime extends to large values of
pling constanty such that the reactive and the relaxationale and y. HenceD is the relevant small parameter in the
modes are almost decoupled. The long-time behavior in thi&ramers-Langer regime. In this whole regime, the least non-
regime is determined by a set of approximately equallyvanishing eigenvalue is determined by the Kramers-Langer
spaced low-lying eigenvalues. On the contrary, at larger valrate formula (23). Possible deviations come from finite-
ues ofy, i.e., in the two other regimes, the long-time behav-barrier corrections and can be accounted for by the Rayleigh
ior is determined by the barrier crossing process leading to guotientA(Y) [see Eq.(27)], which is based on the unper-
least nonvanishing eigenvalue that is separated from aturbed Kramers functio®)(x,y) given in (19) as a trial
larger ones by an exponentially large gap. The precise locdunction. A further improvement of the eigenvalue, namely,
tion of the crossover between the relaxational regime and thep to the order of the third power of the inverse barrier
rate regime as a function @, ¢, and y has not yet been height, can be obtained when the Rayleigh quotient is evalu-
investigated systematically. Results frdig] clearly indi- ated with the improved eigenfunctionQ g (X,y)

FIG. 7. Same as in Fig. 6, but for=0.1.
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FIG. 9. Same as in Fig. 8, but foy<l. (8 y=0.5; (b
v=0.1.

perturbation theory about the unperturbed case of a harmonic
barrier. They have a curved node line that is rotated relative
to the node of the unperturbed Kramers function. Both the
rotation and the curvature quantitatively describe the differ-
ence between the stochastic and the deterministic separatrix
both in the Kramers-Langer and the transition regime.
Yet another important feature is the form of the eigen-
function transversal to its node. From the result of the first-
(c) order perturbation theory one finds that this form can be
written as an error function. It is interesting to note that the
) ) ) numerically exact eigenfunctions show the error function
FIG. 8. Profiles of the eigenfunctio@(x,y) for E=5 and  nrofile in quite a large region of parameter values, even
£=0.01. The solid lines show the numerically exact results. Thedeeply inside the anisotropic regime where the Kramers-
dashed and the dot-dashed lines show the Kramers-Langer funCt'q_rhnger theory and also the perturbation theory completely
[Eq. (19)] and the perturbation expansi¢iq. (34, respectively. fail. This observation suggests a simple ansatz for the eigen-
@ y=2; (b) y=15,(c) y=1. function belonging to the least nonvanishing eigenvalue
reading

+Q(xy) given by(19) and(31). However, we did not con-

sider _th|s here ' o . 5 raxtoy 1
Using a self-consistent criterion, we correctly predicted Q(X,y)= \/:f duexp{ _ _uz], (54)
the transition regime where the Kramers-Langer theory loses mJo 2
its validity and the anisotropy regime is reached when the
coupling constant is decreased at a sufficiently small value oivherea and c are free parameters that have to be chosen
€. The criterion is not reliable at yet smaller valuesgf  such that the Rayleigh quotient is minimal. In this way we
where it indicates a spurious recovery of the Kramers-Langegxpect to obtain good results for the least nonvanishing ei-
theory. Within the transition regime the Rayleigh quotientgenvalue, except for a too low temperature, in which case the
with the Kramers-Langer trial function still gives a reliable ansatz has to be modified by taking into account the curva-
value for the least nonvanishing eigenvalue. This is ndure of the stochastic separatrix. In the relaxational regime,
longer the case for parameter values within the anisotropiwhere y is extremely small, we also do not expdéy) to
regime. hold. There a polynomial iy seems to be a more appropri-
Corrected eigenfunctions were obtained by means of ate ansatz for the trial function.
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APPENDIX

The aim of this Appendix is to give the matrix represen
tation of the Hamiltoniari43) in the basig48) and further to
show a way of determining the free paramaterFor nota-
tional simplicity we rewrite the problem in the form

(— 2+ votvX2+ 04X+ veX®) Xm=Emxm, (A1)

2

2 2 2 il
~ Gt X liYy=Qili),

whereE,= u,/D and Q= w/D, while the coefficients,
of the Schrdinger potential are determined by those o
U(x) andD, reading
1
Yo7 2D

1 3
a0’ 20’

1
2D?’

1

%) UGZW'

Ug=

The matrix representation gfAl) in the basis|i) can be

found easily if one uses the well-known relationships of

harmonic-oscillator eigenfunctions
(ili)=ai,
1

o)
i) = VLT~ 1)~ T T+ 1,

The resulting matrix has a band structure, where the diag
nals are given by

[Vili—1)+\i+1]i+1)],

X|iy=

(A2)

Q
Hn’n=vo+

+ 92| (1 2m 4 22 14 2n 20
4 Q( n) QZ( n n)

506

+F(3+8n+6n2+4n3), (A3)

Hion-a=Hnp-4pn= \/n(n—l)(n—Z)(n—3)

|

Han-6=Ha-sn=q3n(n—1)(n-2)(n-3)

Uy 31)6

X W—FF(ZH—S)

X(n—4)(n—5)]"2

while the remaining matrix elements are equal to zero.
It is clear that neitheE,, nor x, is a function of(2. As

we are unable, however, to handle the infinite expansion in

(48), we have to truncate it at some finite M — 1. Then the

resulting approximation&" and xM of the eigenfunctions
fand eigenvalues depend &h. However, the paramete

can be optimized to yield good approximations of the eigen-

values and eigenfunctions. The upper bound property of the

Rayleigh-Ritz method yields the following inequality for the

sum of the true and approximated eigenvalues:

M—-1 M—-1 M—-1
E Ens E Em: Z Hm,m-
m=0 m=0 m=0
Thus minimizing the trace of the Hamiltonian operator in the
basis of scaled harmonic-oscillator eigenfunctions provides
one with a minimal average error of the eigenvalBgsand,
consequently, a reasonable choice of the free parameter for a
given number of basis functioh. When applied ta/A3),
this yields, after some lengthy but simple algebra, a polyno-
mial of the form[26]

Q4= 40,0%—8v4(2M+ 1/IM)Q — 600 g(M?+2) =0,
(A5)

(A4)

0_

which is easily solved fof) whenM is large:

Q=(60wgM?)Y4 (AB)

Returning in(A6) to the original notation, one immediately
obtains

w=(15D’M?)¥4, (A7)
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