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Activated rate processes of a reactive coordinate in a symmetric double well coupled to a harmonic mode are
studied in the limit of large damping. The transition rate is given by the least nonvanishing eigenvalue of the
corresponding two-dimensional Smoluchowski equation. This eigenvalue is numerically determined for four
different temperatures and various different coupling and anisotropy parameters and compared with the value
of the Rayleigh quotient for the trial function following from the Kramers-Langer theory. Deviations between
the numerically exact rates and Kramers-Langer theory are due to finite-barrier heights and may become very
large in the case of a slow harmonic mode, i.e., large anisotropy. As long as these deviations are not too large,
the rate expression obtained from the Rayleigh quotient is in excellent agreement with the numerically exact
results. The stochastic separatrix is numerically determined as the node of the eigenfunction corresponding to
the least nonvanishing eigenvalue and compared to results from a perturbation theory.
@S1063-651X~96!09112-X#

PACS number~s!: 05.40.1j, 82.20.Db

I. INTRODUCTION

The thermally activated escape over a barrier represents a
decisive step in the dynamics of various processes in phys-
ics, chemistry, and biology@1,2#. The role of the interaction
of the considered system with a surrounding heat bath was
recognized and fully taken into account for a simple model
by Kramers@1#. He considered a single mechanical particle
in a bistable potential that interacts with a heat bath. The heat
bath causes a velocity proportional friction force and a ran-
dom force, the former extracting and the latter supplying
energy. The correlation time of the random force is supposed
to be vanishingly small such that a Markovian process results
for the considered system. This assumption is not always met
in physical applications. Therefore, generalizations to
higher-dimensional@3–6# and non-Markovian@7,8# systems
have been put forth. All these theories, which will be sub-
sumed under the name Kramers-Langer theory, are generali-
zations of Kramers’s spatial diffusion regime where the cou-
pling of the system to the bath is strong enough such that
energy is efficiently exchanged between system and bath.
Energy diffusion limited rates for generalized Langevin
equations are treated in Ref.@9# and for multidimensional
problems in @10#, but will not be considered here. The
Kramers-Langer theory is correct, when the barrier height
V‡ is large compared to the thermal energyb21. The actual
value ofbV‡ for which it applies depends on the considered
system. In particular, the presence of other small or large
parameters may render the Kramers-Langer theory inappli-
cable for all physically relevant barrier heights as has been
found for a model with exponential memory friction for both
a large bath correlation time and large static friction@8,11#.

A generalization of this model has been put forth for

charge-transfer reactions in polar solvents@12#. There the
relaxation time of the solvent polarization may be very dif-
ferent from the one of the reactive coordinate. Within a
simple model, the polarization is described by a single sol-
vation coordinatey, which couples to the reactive coordinate
x through the potential of mean forceV(x,y), reading

V~x,y!5U~x!1
G

2
@y2yeq~x!#2, ~1!

whereU(x) is a double-well potential,yeq(x) is the equilib-
rium polarization at the given valuex of the reactive coordi-
nate, andG is the coupling constant. When the motion of the
remaining degrees of freedom that make up the heat bath at
temperatureb21 are fast, the dynamics can be modeled in
terms of the coupled Langevin equations

ẍ52]xV~x,y!2hxẋ1A2hx /b f x~ t !,

ÿ52]yV~x,y!2hyẏ1A2hy /b f y~ t !, ~2!

wherehx andhy are the damping constants in the directions
of the reaction and solvation coordinates, respectively, and
f x(t) and f y(t) are independent Gaussian white random
forces with zero mean values

^ f x~ t !&5^ f y~ t !&5^ f x~ t ! f y~s!&50,

^ f x~ t ! f x~s!&5^ f y~ t ! f y~s!&5d~ t2s!. ~3!

In the limit of large damping constantshx andhy , the ve-
locities ẋ and ẏ relax fast and a two-dimensional Markovian
process results that is governed by a Smoluchowski equation.
It reads

] tP~x,y,t !5LP~x,y,t !, ~4!

where

L5D~]xe
2V/D]xe

V/D1«]ye
2V/D]ye

V/D!P~x,y,t ! ~5!
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denotes the Smoluchowski operator. Here dimensionless
variables have been introduced. In particular, time is mea-
sured in units ofhx

21 , «5hx /hy denotes the anisotropy pa-
rameter, andD is a dimensionless temperature.

In another paper@13#, we have studied this model for the
potential

V~x,y!5U~x!1
g

2
~y2x!2,

U~x!5
1

4
x42

1

2
x2, ~6!

which has two minima at (21,21) and (1,1) and a saddle
point at the origin. The barrier height measured in units of
the thermal energy of the bath isbV‡5E5(4D)21. A typi-
cal shape of the potential surface and its equipotential lines
are shown in Fig. 1.

For most of the parameter values the transition rate from
one minimum to the other is half of the least nonvanishing
eigenvaluel1 of the Smoluchowski operatorL defined in
~5!. Using a suitable set of basis functions, this eigenvalue
has been calculated in@13# for different values of the reduced
barrier heightE, dimensionless coupling constantg, and an-
isotropy parameter«. A comparison of the numerically exact
least eigenvalue and the result from the Kramers-Langer
theory shows good agreement when the coupling parameter
g is large. If g is of the order ofU9(x51) or smaller and
E510 or smaller the agreement becomes worse. In particu-
lar, when the anisotropy parameter« additionally becomes
small the Kramers-Langer theory completely breaks down.

The mathematical reason for this breakdown is the pres-
ence of up to three small parametersD,«, andg. Though the
limit of the least eigenvalue is always zero, independently of
the order in which the parametersD,«, and g vanish, the
asymptotic behavior crucially depends on the relative order
of these parameters. If, for example, the diffusion constant
D is the smallest parameter, the smallest nonvanishing eigen-
value is well separated from the others and given by the
Kramers-Langer expression for the transition rate between
the two metastable states of the potential. It consequently is
of Arrhenius type with an activation energy given by the
barrier height at the saddle point. If, however, the anisotropy

« is the smallest parameter and the couplingg is finite but
not too large, a slow one-dimensional motion in they direc-
tion in an effective double-well potential results, which has a
smaller barrier height than the bare potential@13#. The long-
time behavior is then also governed by a single Arrhenius-
type eigenvalue but with a smaller activation energy than
that following from the bare potential. Another extreme case
occurs if the coupling constantg approaches zero first. Then
the y coordinate is also slow and a densely spaced spectrum
of almost equidistant eigenvalues determines the long-time
behavior. In particular, the breakdown of the Kramers-
Langer theory in the anisotropic friction limit was discussed
in a number of papers@14–17#.

In this paper, we compare numerically exact least eigen-
values with results from the Rayleigh quotient for Kramers-
Langer-type trial functions. In this way finite barrier correc-
tions are systematically studied. This leads to much better
results for all cases where the relative deviation between the
Kramers-Langer rate and the numerically exact rate is less
than approximately 50%. In cases where the Kramers-
Langer theory fails completely the finite-barrier corrections
also do not yield valid results. By means of a perturbation
theory the Kramers-Langer trial function systematically can
be improved@18,19#. While the node line of the original
Kramers-Langer trial function coincides with the determinis-
tic separatrix at the saddle, the node line of the improved
trial function better approximates the true stochastic separa-
trix @20#.

Before closing this Introduction we note that the problem
of finite-barrier corrections for the rate actively has been
studied in recent years and many different methods have
been suggested for their evaluation@6,19,21–23#. In this pa-
per, we will use a perturbation expansion in combination
with the Rayleigh quotient@19#. The central advantages of
this approach are that, first, it yields approximate eigenvalues
that possess the property of being an upper bound, second, it
allows one to systematically construct perturbation correc-
tions to the conventional Kramers-Langer trial function, and,
third, a first-order error in the trial function leads to a second-
order error in the estimate for the rate. The paper is orga-
nized as follows. In Sec. II the Rayleigh quotient and the
perturbation theory are presented. The numerical method is
reviewed in Sec. III and the results are compared in Sec. IV.
Section V ends the paper with an outlook.

II. PERTURBATION THEORY

In this section the Kramers-Langer theory is briefly re-
viewed within the scope of the Rayleigh quotient method and
then a perturbation theory for the Kramers function is devel-
oped.

A. Langer’s formula

As we have already noted, we treat the equilibration pro-
cess of the considered system by means of the eigenvalue-
problem of the Smoluchowski operator defined by~5!, that
is,

LPn~x,y!52lnPn~x,y!. ~7!

It is well known @24# that a process governed by a Smolu-
chowski equation obeys strict detailed balance, i.e.,

FIG. 1. Potential surfaceV(x,y)/D @Eq. ~5!# and its equipoten-
tial lines forD50.05 andg50.05.
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L~P0f !5P0L
1 f ~8!

for any smooth functionf , where

P0~x,y!5exp$2V~x,y!/D%Y E
2`

`

dx dy

3exp$2V~x,y!/D% ~9!

denotes the equilibrium distribution satisfyingLP050 and
L1 denotes the backward operator

L15DeV/D~]xe
2V/D]x1«]ye

2V/D]y!. ~10!

As a consequence of~8!, L1 is a Hermitian operator with
respect to the scalar product of functionsf (x,y) and
g(x,y) defined by

~g, f !5E
2`

`

dx dyP0~x,y!g~x,y! f ~x,y!. ~11!

Therefore, a complete orthogonal set of eigenfunctions
$Qn% exists with corresponding real eigenvaluesln that are
non-negative@24#

~Qn ,Qm!5dn,m ,

L1Qn52lnQn . ~12!

Equation~8! further entails thatL has the same eigenvalues
ln with the corresponding eigenfunctionsPn5QnP0. Obvi-
ously,Q051 is an eigenfunction with corresponding eigen-
valuel050.

Here we are interested mainly in the least nonvanishing
eigenvaluel1 ~for notational simplicity we will drop from
here on the index 1 whenever no confusion may arise!. For
this eigenvalue, the Rayleigh quotient

l52
~Q,L1Q!

~Q,Q!
~13!

provides an upper bound ifQ is orthogonal onQ051, i.e.,
(Q,1)50. In order to construct a trial function we use the
fact that the least eigenvalue is small and hence may be
neglected in the eigenvalue problem, i.e.,

L1Q50. ~14!

For vanishing diffusion the resulting first-order partial differ-
ential equation has only solutions that are piecewise constant
on the domains of attraction of the deterministic equations of
motion. We choose these values as being11 and21, such
that the resulting function is orthogonal on the overall con-
stant function. The presence of small diffusive terms inL1

changes the behavior ofQ only near the deterministic sepa-
ratrix where the steplike behavior is smoothed out. Since the
Rayleigh quotient contains the stationary distribution as a
weight, only the region of the saddle point is of importance
for sufficiently smallD. Hence we may split the backward
operator into a leading contributionL0

1 and a correction
L1

1 reading

L15L0
11L1

1 , ~15!

where

L0
15@~12g!x1gy#]x1D]xx

2 1«g~x2y!]y1«D]yy
2

~16!

describes the linear dynamics near the saddle and

L1
152x3]x ~17!

the anharmonic correction. In passing we note that rescaling
the coordinatesx and y by the inverse square root of the
barrier height renders the leading contributionL0

1 indepen-
dent of the diffusion constantD and the correctionL1

1 pro-
portional to the inverse barrier height. Hence the inverse bar-
rier height may be considered as the formal smallness
parameter in the following perturbation theory. The solution
of the unperturbed problem

L0
1Q~0!50 ~18!

is known from the Kramers-Langer theory. It reads

Q~0!~x,y!5A2

pE0
Ab~wx1y!

duexp$2u2/2%, ~19!

where

b5
k

D~«1w2!
, ~20!

w5«1
k

g
, ~21!

and

k5
1

2
$12g2g«1@~12g2g«!214g«#1/2%. ~22!

The result of Eq.~19! used as a trial function in the Rayleigh
quotient yields, in leading order inD,

lKL5
A2
p

k exp$2E%. ~23!

This coincides with twice the Kramers-Langer rate@4# and is
therefore distinguished from the other expressions for the
eigenvalue by the subscript KL.

Now, let us briefly analyze the dependence oflKL on the
coupling constant and anisotropy parameter. These param-
eters enter~23! only through the transmission factor~22!.
This factor tends to unity for all positiveg ’s if the anisotropy
parameter goes to infinity. Note that in the original units of
~2! for fixedhy the rate tends to zero as 1/hx with increasing
hx . On the other hand, in the limit of vanishingly small
anisotropy parameters~in the following this limiting case
will be referred to asstrongly anisotropiclimit ! there are
three regimes with a different dependence oflKL on «.
When g is larger than unity,lKL is linear in «, i.e.,
k.«g/(g21). At g51 it also tends to zero as the square
root of «, lKL;A«. Finally, if the coupling constant is less
than unity, the transmission factor tends to the finite value
k512g. This, however, does not coincide with the behav-
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ior of the least nonvanishing eigenvalue, which must always
linearly vanish with« @13#. Thus one may expect consider-
able deviations of the Kramers-Langer theory from numeri-
cally exact results in the limit«→0 for all positiveg<1.
Therefore, much of the work dealing with activated rate pro-
cesses in systems coupled to slow harmonic modes@14,16# is
concerned with estimates for the rate in the limit of vanish-
ingly small «.

Our results of Ref.@13# show first, thatg51 is not a strict
limit of validity of the Kramers-Langer theory—rather, the
latter fails for sufficiently small« also if g is larger than
unity, and, second, that the Kramers-Langer theory also fails
near the isotropic case«;1 if the barrier height is not too
large andg is of order unity. We also found that the theory
may break down even for«.1 due to the smallness of the
coupling constant. In this limit the transmission factork in
~23! approaches unity corresponding to the motion in the
bare reactive potentialU(x) and does not reflect the slow
relaxation of they coordinate on the time scaleg21. This
case is not particularly interesting since then the reactive
system is practically decoupled from the extremely slowy
mode.

In those cases when the reactive mode determines the
long-time dynamics the observed deviations of the rate from
the Kramers-Langer theory are due to the fact that the trial
function ~19! only is exact for a parabolic barrier and that
also anharmonic contributions that are contained in the
weight of the scalar product~13! are neglected; see also~11!.

B. Finite-barrier corrections

Based on the decomposition of the backward operator
~15!, a perturbation theory for the trial function can be per-
formed leading to the series representation@18,19#

Q~x,y!5Q~0!~x,y!1Q~1!~x,y!1Q~2!~x,y!1•••, ~24!

whereQ(0)(x,y) is determined by~19!, while all higher con-
tributions recursively follow from a hierarchy of inhomoge-
neous equations of the form

L0
1Q~k!~x,y!52L1

1Q~k21!~x,y!, k>1. ~25!

Inserting~24! into ~13!, we find the estimate of the rate

l~k11!5l~k!
Nk11

Nk
2

~Q~k! ,L1
1Q~k21!!

Nk11
2

~Q~k! ,L1
1Q~k!!

Nk11
,

Nk5~Q~0!1•••1Q~k! ,Q~0!1•••1Q~k!!, ~26!

wherel (0)50, Q(21)50, andN05(Q(0) ,Q(0)). The result
l (k) is correct up to order 2k21 in the perturbation, i.e., up
to the orderE22k11. Usually, one argues that allNk are unity
up to exponentially small corrections in the barrier height,
and therefore can be neglected. We will see in the following
that for low barrier heights these corrections also become
important. Note that alll (k) represent upper bounds of the
true eigenvaluel1.

In the present paper, we will not go beyond first order in
the perturbationL1

1 . It is not difficult to obtain the rate in-
cluding the first correction

l~1!5
2k

pN0Aa

E
2`

`

dxexp$2~x412x2/a11!/4D%

E
2`

`

dxexp$2~x221!2/4D%

,

~27!

where

a5112Db/g. ~28!

If D,0.05 the scalar productN0 can be approximated by
unity. The error of this approximation is of the order
D exp24/D. If, further, a2D<0.1 one can simplify the
above formula by deexponentiating exp$2x4/4D% and keep-
ing only terms that contribute up to first order inD ~in the
inverse barrier height!

expH 2
x4

4D J 512
x4

4D
1•••.

In the indicated parameter regime the error of this approxi-
mation is at most 2%. The integrations can be performed
analytically, yielding the expression

lRQ5lKLF12
3

4
D~11a2!G . ~29!

where the index RQ indicates the result of the Rayleigh quo-
tient up to first order inD. Note that according to its defini-
tion ~20! b, and consequentlya, diverges atg51 and
«50. Further, it must be pointed out that the bounding prop-
erty of the Rayleigh quotient may be lost both whenN0 is
approximated by unity and when the numerator and the de-
nominator of~27! are asymptotically evaluated.

Next, we determine the first-order corrections of the
Kramers-Langer trial function~19! with the aim of finding
the precise location of the stochastic separatrix in the vicinity
of the saddle point. For this purpose it is convenient to split
off a Gaussian function fromQ(1) ,

Q~1!~x,y!5A2b

p
F~x,y!expH 2

1

2
b~wx1y!2J . ~30!

Then Eq.~25! yields

@L0
122bD~wx1y!~]x1«]y!2k#F5wx3. ~31!

The above equation can exactly be solved by expandingF in
powers ofx andy,

F~x,y!5Ax1By1Cx31Gx2y1Rxy21Sy3. ~32!

Inserting ~32! into ~31! and equating like powers inx and
y gives
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R5
k13«ga

g22bw
S,

G5
k211g12«ga12bw2

2~g22bw!
R2

3

2
«S,

C5
k2212g1«ga14bw2

3~g22bw!
G2

2

3
«R,

B5
~12g2k22bw2!~2G16«S!2~g22bw!~2«R16C!

«~g22bw!21~12g2k22bw2!~k1«ga!
,

A5
~k1«ga!B22G26«S

g22bw
,

S5w~g22bw!H 23 «~k13«ga!~k13g2316bw2!

1@~k13«ga!~k12g2112«ga12bw2!

23«~g22bw!2#F«2
2

~k13g2316bw2!~k12g221«ga14bw2!

6~g22bw!2 G J 21

.

~33!

Hence, in first-order perturbation theory the trial function
reads

Q~x,y!5A2b

p F E
0

wx1y

duexpH 2
b

2
u2J

1F~x,y!expH 2
b

2
~wx1y!2J G . ~34!

By definition, the probabilities of going in either direction
of reactants and products are equal for trajectories that start
from the stochastic separatrix. One can show@19,20# that the
stochastic separatrix coincides with the node line of the
eigenfunction belonging to the least nonvanishing eigenvalue
provided it is the relevant eigenvalue characterizing the con-
sidered transition. Using for the eigenfunction the result~34!,
we obtain as an equation for the stochastic separatrix

Q~x,ySS!50. ~35!

This equation can be solved forySS numerically. In the vi-
cinity of the origin an approximate analysis yields

ySS~x!52~A1w2Bw!x1~C2Gw1Rw22Sw3!x3.
~36!

By contrast, the deterministic separatrix is given in the vicin-
ity of the saddle point by the straight line

yDS~x!52wx, ~37!

which also has a slope different from that of the stochastic
separatrix atx50.

III. BASIS SET METHOD

In this section a basis set method for numerically solving
time-independent Smoluchowski and Schro¨dinger equations
is developed. The method is very efficient in dealing with a
so-called system-bath situation in which a nonlinear degree
of freedom couples to a harmonic bath. For the sake of gen-
erality, we consider a harmonic bath with an arbitrary num-
ber of modesN governed by the Smoluchowski operator

L5DS ]xe
2V/D]xe

V/D1(
i51

N

« i] ie
2V/D] ie

V/DD ,
V~x,y!5U~x!1

1

2(i51

N

g i~yi2x!2, ~38!

whereyT5(y1 , . . . ,yN), ] i5]yi, and« i5hx /hyi
. First we

transform~38! by means of the ansatz

P~x,y!5c~x,y!expH 2
V~x,y!

2D J ~39!

into a Hamiltonian operator of the form

H5Hx1Hb1Hxb ,

Hx52D]xx
2 1

U82

4D
2
U9

2
,

Hb5(
i51

N

« iF2D] i i
21

g i
2

4D
~yi2x!22

g i

2 G ,
Hxb5(

i51

N
1

2D
@U8~x!g i~x2yi !2Dg i #

1
1

4D F(
i51

N

g i~x2yi !G2. ~40!

This transformation allows us to take advantage of the fact
that the matrix representation of a Hamiltonian operator is
symmetric. The underlying idea is to determine the generic
basis function element as

cnm5xm~x!)
i51

N

wni
~yi2x!, ~41!

where the products) iwni
(yi2x) are eigenfunctions of the

bath HamiltonianHb which are given by a set of displaced
harmonic oscillators

H 2D] i i
21

g i
2

4D
~yi2x!22

g i

2 J wni
5g iniwni

, ~42!

while xm(x) are the eigenfunctions of the Hamiltonian op-
erator corresponding to theuncoupledreactive subsystem

S 2D]xx
2 1

U82

4D
2
U9

2 Dxm5mmxm . ~43!
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It is straightforward to construct the matrix representation of
the Hamiltonian~40! in the basis~41!. One obtains

Hnm,n8m85Fmm1(
i51

N

~11« i !g ini Gdn,n8dm,m8

1Rm8,m(
i51

N

Ag iD~ni811!dni ,ni811dn,n8
i

1Rm,m8(
i51

N

Ag iDni8dni ,ni821dn,n8
i

1
1

2
dm,m8(

i51

N

(
jÞ i

N

Ag ig j@Ani8~nj811!

3dni ,ni821dnj ,nj811

1A~ni811!nj8dni ,ni811dnj ,nj821#dn,n8
i , j , ~44!

dn,n8
i

5)
kÞ i

dnk ,nk8, dn,n8
i , j

5 )
kÞ i , j

dnk ,nk8,

where

Rm,m85^mueU/2D]xg8e2U/2Dum8&. ~45!

In the present case of a single bath mode, it reads

Hnm,n8m85@mm1~11«!gn#dn,n8dm,m8

1AgD~n811!dn,n811Rm8,m

1AgDn8dn,n821Rm,m8. ~46!

This representation has the advantage that a few basis
functions are sufficient to produce very accurate low-lying
eigenvalues for«>1. The method is ratherinsensitivewith
respect to the barrier height and the coupling constant. With
a decreasing anisotropy parameter the convergence only
slowly becomes worse. Even for«,e2E a number of 10–15

TABLE I. Comparison between Langer’s formulalKL @Eq. ~23!#, the Rayleigh quotient evaluated in the steepest-descent approximation
lRQ @Eq. ~29!# @a bar2 indicates a negative value#, the full Rayleigh quotientl (1) @Eq. ~27!#, and the numerically exact resultsl for the
least nonvanishing eigenvalue of the Smoluchowski operator~5!. Exponential notation@2k# means that the preceding number is to be
multiplied by 102k.

E52.5 E55
g « lKL lRQ l (1) l lKL lRQ N0l

(1) l

0.5 0.1@22# 0.185@21# 0.157@21# 0.140@21# 0.6929@24# 0.152@22# 0.140@22# 0.122@22# 0.1497@24#

0.5 0.1@21# 0.187@21# 0.473@22# 0.142@21# 0.6768@23# 0.153@22# 0.960@23# 0.123@22# 0.1364@23#

0.5 0.1 0.200@21# 0.569@22# 0.160@21# 0.5529@22# 0.164@22# 0.106@22# 0.137@22# 0.7853@23#

0.5 1 0.261@21# 0.125@21# 0.234@21# 0.2046@21# 0.214@22# 0.158@22# 0.192@22# 0.1839@22#

0.5 10 0.341@21# 0.264@21# 0.321@21# 0.3078@21# 0.280@22# 0.248@22# 0.256@22# 0.2553@22#

0.5 100 0.366@21# 0.310@21# 0.347@21# 0.3321@21# 0.300@22# 0.277@22# 0.276@22# 0.2749@22#

1 0.1@22# 0.115@22# 0.978@23# 0.335@23# 0.5686@24# 0.944@24# 0.873@24# 0.329@24# 0.7107@25#

1 0.1@21# 0.351@22# 0.171@22# 0.5567@23# 0.289@23# 0.162@23# 0.6811@24#

1 0.1 0.998@22# 0.728@22# 0.4648@22# 0.819@23# 0.647@23# 0.4977@23#

1 1 0.228@21# 0.270@22# 0.202@21# 0.1904@21# 0.187@22# 0.105@22# 0.168@22# 0.1645@22#

1 10 0.339@21# 0.267@21# 0.312@21# 0.3065@21# 0.278@22# 0.249@22# 0.255@22# 0.2539@22#

1 100 0.366@21# 0.310@21# 0.339@21# 0.3321@21# 0.300@22# 0.277@22# 0.276@22# 0.2748@22#

1.5 0.1@22# 0.110@23# 0.934@24# 0.704@24# 0.4963@24# 0.902@25# 0.834@25# 0.643@25# 0.5133@25#

1.5 0.1@21# 0.102@22# 0.679@23# 0.4876@23# 0.838@24# 0.429@25# 0.617@24# 0.4998@24#

1.5 0.1 0.667@22# 0.516@22# 0.4173@22# 0.548@23# 0.128@23# 0.452@23# 0.4018@23#

1.5 1 0.215@21# 0.880@22# 0.191@21# 0.1839@21# 0.176@22# 0.124@22# 0.159@22# 0.1566@22#

1.5 10 0.338@21# 0.272@21# 0.310@21# 0.3060@21# 0.277@22# 0.250@22# 0.254@22# 0.2534@22#

1.5 100 0.366@21# 0.310@21# 0.337@21# 0.3321@21# 0.300@22# 0.278@22# 0.276@22# 0.2748@22#

2 0.1@22# 0.736@24# 0.626@24# 0.551@24# 0.4559@24# 0.604@25# 0.559@25# 0.486@25# 0.4357@25#

2 0.1@21# 0.711@23# 0.183@23# 0.538@23# 0.4489@23# 0.584@24# 0.367@24# 0.474@24# 0.4269@24#

2 0.1 0.548@22# 0.172@22# 0.445@22# 0.3905@22# 0.450@23# 0.296@23# 0.384@23# 0.3581@23#

2 1 0.208@21# 0.121@21# 0.186@21# 0.1803@21# 0.170@22# 0.135@22# 0.154@22# 0.1524@22#

2 10 0.337@21# 0.275@21# 0.309@21# 0.3057@21# 0.277@22# 0.251@22# 0.254@22# 0.2532@22#

2 100 0.366@21# 0.311[21# 0.336@21# 0.3321@21# 0.300[22# 0.278@22# 0.276@22# 0.2748@22#

3 0.1@22# 0.553@24# 0.470@24# 0.455@24# 0.4145@24# 0.454@25# 0.420@25# 0.391@25# 0.3716@25#

3 0.1@21# 0.542@23# 0.340@23# 0.448@23# 0.4090@23# 0.445@24# 0.362@24# 0.384@24# 0.3659@24#

3 0.1 0.457@22# 0.292@22# 0.389@22# 0.3622@22# 0.375@23# 0.307@23# 0.330@23# 0.3183@23#

3 1 0.200@21# 0.142@21# 0.180@21# 0.1764@21# 0.164@22# 0.141@22# 0.149@22# 0.1480@22#

3 10 0.337@21# 0.278@21# 0.309@21# 0.3055@21# 0.276@22# 0.252@22# 0.254@22# 0.2529@22#

3 100 0.366@21# 0.311@21# 0.336@21# 0.3321@21# 0.300@22# 0.278@22# 0.276@22# 0.2748@22#
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basis functions perx andy are typically required regardless
of the coupling constant. The resulting matrices can be di-
agonalized by standard routines for sparse or band structured
matrices.

Now, it remains to evaluate the eigenvaluesmm and the
matrix elementsRm,m8. For this purpose we use a complete
orthonormal set of functionsu i &, i.e.,

xm5(
i50

`

Cm,i u i &, ~47!

that are eigenfunctions of thescaledharmonic oscillator

S 2D]xx
2 1

v2

4D
x22

v

2 D u i &5v i u i &, ~48!

where the frequencyv is a free parameter that can be chosen
such that the convergence of the series in~47! is as fast as
possible. Both the matrix representation of the Hamiltonian
~43! and the method for determiningv are given in the Ap-
pendix. Here we only note that the use of the basis of scaled
harmonic oscillator eigenfunctions allows one to truncate the
sum in ~47! at least at half of the number of terms that are
necessary to converge to 12 significant digits compared to
the standard unscaled basis corresponding tov51. Another
advantage of the basis~48! is that the matrix elements
Rm,m8 can be evaluatedanalytically, that is, without loss of
accuracy. For the potentialU(x) defined by~5! a straightfor-
ward calculation yields the algebraic expression

Rn,m5 (
i50

M21

Ai11HA D

4vF3Dv ~ i11!21G
3~Cn,iCm,i111Cn,i11Cm,i !

2A v

4D
~Cn,iCm,i112Cn,i11Cm,i !J

1
~D/v!3/2

2D (
i50

M23

A~ i11!~ i12!~ i13!

3~Cn,i13Cm,i1Cn,iCm,i13!. ~49!

IV. RESULTS

The least nonvanishing eigenvalue and the corresponding
eigenfunction of the two-dimensional Smoluchowski equa-
tion ~5! have been calculated in a wide range of parameters.
The results for the eigenvalue are presented in Tables I and II
and compared to the Langer formula~23!, the full Rayleigh
quotient ~27!, and its asymptotic value including the first-
order corrections in the inverse barrier heightD/45E21

~29!. As for E>5, the inequalities 0.99<N0,1 usually
hold; we have setN051 in evaluating the full Rayleigh quo-
tient ~27! for E55, 7.5, and 10.

For large parameters«, g, andE, all approximate rate
expressions agree well with the numerically exact least non-
vanishing eigenvaluel. Large deviations are found if both
« and g are small. The region of complete failure of all
approximate expressions grows slowly towards larger« and
g values with decreasing barrier height. For barrier heights

smaller thanE55, the dependence of the denominator
(Q,Q) of the Rayleigh quotient on the detailed shape of the
trial functionQ(x,y) must be taken into account. In particu-
lar, the factorN0 in the denominator of~27! must not be
approximated by unity. Table III gives the scalar product
N0 for E52.5 and various values of« and g. Though the
resulting corrections are ‘‘exponentially small’’ they do not
much differ in magnitude from the ‘‘leading’’ algebraic cor-
rections for low barrier heights. This indicates that the rate
description as a whole loses its meaning for too low barriers.
It is interesting to note that this failure may be due to the
equilibrium properties of the system. The equilibrium distri-
bution ~9! no longer allows an unambiguous definition of the
populations of the different metastable states@20,25# al-
though the long-time dynamics may still be governed by a
single least nonvanishing eigenvalue that is well separated
from the rest of the finite eigenvalues@13#.

For the parameter values that are used in Tables I and II,
the Kramers-Langer expression has its minimal error of
about 4% forE510 and«>10 for all values ofg. The error
increases with decreasing« for all values ofg, but is stron-
gest for smallg. For E510 it completely fails forg,1.5
and«,0.1. For small values of« the error of the Kramers-
Langer rate decreases only rather slowly with increasingg.
Finite-barrier corrections according to~29! lead to a consid-
erable improvement in many cases. ForE510 andg>2
already the leading finite-barrier corrections agree very well
with the exact rates. If, however, the conditiona2D,0.1 is
violated, the corrections in~29! are not sufficient and~29!
may yield even negative results. These instances are indi-
cated by bars in Tables I and II. Finite-barrier corrections
must then be determined by means of the full Rayleigh quo-
tient ~27! includingN0 for E,5, in which caseN0 cannot be
approximated by unity. ForE510 and«.0.1 Eq.~27! gives
excellent results for all considered values ofg. If, however,
g<1 and«<0.01, all approximate rate expressions, includ-
ing ~27!, strongly deviate by factors, or even by orders of
magnitude, from the numerically exact least nonvanishing
eigenvalue.

Note that the Kramers-Langer rate is always larger than
the Rayleigh quotient. BothlKL andl (1) are larger than the
numerically exact least nonvanishing eigenvalue as one ex-
pects. This bounding property, however, does not hold for
N0l

(1), that is, if one sets, in~27!, N051. This is seen from
Table III, in which the productN0l

(1) is shown and com-
pared with the numerically exact results forE52.5.

The relative errors of the different approximations are dis-
played in Fig. 2 as functions of« for various values ofE and
g. The relative deviation of the Kramers-Langer rate from
the Rayleigh quotient reading

q5
lKL2l~1!

l~1! 3100% ~50!

yields a simple self-consistent criterion for the trial function
~19!. If Q(x,y) had been an exact eigenfunction, the
Kramers-Langer rate and the Rayleigh quotient would coin-
cide. Figure 3 displays the curves of constantq in the «-g
plane for different values ofE. The lines corresponding to
q520% reach their maximal values of« at g,1. The
branches on the right-hand side of the maxima represent a
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reliable border line of applicability of the Kramers-Langer
theory and the Rayleigh quotient based on the trial function
~19!. For values on the left-hand side of the maximum the
criterion fails since the true eigenfunction differs too much
from the trial function~19!.

Figure 4 shows numerical results for the eigenfunction
Q(x,y) and its node line, which coincides with the stochastic
separatrix. We find thatQ(x,y) and consequently also the
stochastic separatrix rotates with decreasing anisotropy pa-
rameter. It moves in a counterclockwise direction from the
y axis for large« to the x axis in the strongly anisotropic
limit «→0 for all values of the coupling constant. This is in
contrast to the behavior of the deterministic separatrix~37!,
which does not approach thex axis if g,1. Hence we con-
clude that a reason for the failure of the Kramers-Langer
theory is the different location of the stochastic and deter-
ministic separatrix for small values of«.

In Fig. 5 the stochastic and the deterministic separatrices
are compared for different parameter values. They are indis-
tinguishable from each other for all« if the coupling be-
tween the system and the nonreactive mode is sufficiently
strong, i.e.,g>U9(xmin)52. This is not the case forg,2.
Then the difference between the stochastic and the determin-
istic separatrix, which is still invisible for«>10, increases

with decreasing anisotropy parameter. Figure 6 shows that
the stochastic separatrixySS(x) becomes curved for«<1
and has a slope atx5y50 that is different from that of
yDS(x). One also sees that the finite-barrier expansion for the
stochastic separatrix~36! accounts quantitatively for this dif-
ference. Finally, with further decreasing«, the slope of the
deterministic separatrix approaches a finite limiting value,
namely,w5g2121, in contrast to the stochastic separatrix.
All these peculiarities become more evident for smaller val-
ues ofg ~see Fig. 7!. For g,0.5 the Kramers-Langer func-
tion becomes inapplicable already for«'1.

Besides the location of the node line, the shape of the trial
function perpendicular to the node line is another important
factor that influences the value of the Rayleigh quotient. Us-
ing z5(wx1y)/(w211)1/2 as a coordinate in the direction
transverse to the node, one obtains as the profile of the
Kramers-Langer function

Q~0!~z!5A 2

ps2E
0

z

duexpH 2
u2

2s2 J , ~51!

where the width reads

s5@b~w211!#21/2. ~52!

TABLE II. Same as in Table I, but forE57.5 and 10.

E57.5 E510
g « lKL lRQ N0l

(1) l lKL lRQ N0l
(1) l

0.5 0.1@22# 0.125@23# 0.118@23# 0.106@23# 0.2958@25# 0.102@24# 0.831@25# 0.901@25# 0.5224@26#

0.5 0.1@21# 0.126@23# 0.944@24# 0.107@23# 0.2320@24# 0.103@24# 0.839@25# 0.912@25# 0.3227@25#

0.5 0.1 0.135@23# 0.103@23# 0.118@23# 0.8816@24# 0.111@24# 0.910@25# 0.100@24# 0.8473@25#

0.5 1 0.176@23# 0.145@23# 0.163@23# 0.1601@23# 0.145@24# 0.126@24# 0.136@24# 0.1352@24#

0.5 10 0.230@23# 0.212@23# 0.217@23# 0.2161@23# 0.188@24# 0.178@24# 0.180@24# 0.1804@24#

0.5 100 0.247@23# 0.234@23# 0.233@23# 0.2324@23# 0.202@24# 0.195@24# 0.194@24# 0.1939@24#

1 0.1@22# 0.775@25# 0.736@25# 0.302@25# 0.7839@26# 0.636@26# 0.266@26# 0.7848@27#

1 0.1@21# 0.237@24# 0.146@24# 0.7340[25# 0.194@25# 0.127@25# 0.7184@26#

1 0.1 0.673@24# 0.565@24# 0.4798@24# 0.552@25# 0.479@25# 0.4301@25#

1 1 0.154@23# 0.109@23# 0.143@23# 0.1414@23# 0.126@24# 0.985@25# 0.119@24# 0.1189@24#

1 10 0.228@23# 0.212@23# 0.216@23# 0.2148@23# 0.187@24# 0.177@24# 0.179@24# 0.1793@24#

1 100 0.247@23# 0.234@23# 0.233@23# 0.2324@23# 0.202@24# 0.195@24# 0.194@24# 0.1939@24#

1.5 0.1@22# 0.740@26# 0.703@26# 0.569@26# 0.4893@26# 0.608@27# 0.319@27# 0.488@27# 0.4379@27#

1.5 0.1@21# 0.688@25# 0.253@25# 0.543@25# 0.4732@25# 0.565@26# 0.348@26# 0.464@26# 0.4215@26#

1.5 0.1 0.450@24# 0.220@24# 0.392@24# 0.3651@24# 0.369@25# 0.315@25# 0.331@25# 0.3164@25#

1.5 1 0.145@23# 0.116@23# 0.135@23# 0.1339@23# 0.119@24# 0.113@24# 0.113@24# 0.1123@24#

1.5 10 0.228@23# 0.213@23# 0.215@23# 0.2143@23# 0.187@24# 0.180@24# 0.179@24# 0.1789@24#

1.5 100 0.247@23# 0.234@23# 0.233@23# 0.2324@23# 0.202@24# 0.195@24# 0.194@24# 0.1939@24#

2 0.1@22# 0.496@26# 0.471@26# 0.423@26# 0.3955@26# 0.407@27# 0.331@27# 0.358@27# 0.3431@27#

2 0.1@21# 0.479@25# 0.360@25# 0.412@25# 0.3864@25# 0.393@26# 0.320@26# 0.348@26# 0.3345@26#

2 0.1 0.369@24# 0.285@24# 0.330@24# 0.3173@24# 0.303@25# 0.251@25# 0.278@25# 0.2712@25#

2 1 0.140@23# 0.120@23# 0.131@23# 0.1299@23# 0.115@24# 0.103@24# 0.109@24# 0.1089@24#

2 10 0.227@23# 0.213@23# 0.215@23# 0.2141@23# 0.187@24# 0.178@24# 0.179@24# 0.1787@24#

2 100 0.247@23# 0.234@23# 0.233@23# 0.2324@23# 0.202@24# 0.195@24# 0.194@24# 0.1939@24#

3 0.1@22# 0.373@26# 0.354@26# 0.336@26# 0.3260@26# 0.306@27# 0.277@27# 0.282@27# 0.2773@27#

3 0.1@21# 0.365@25# 0.320@25# 0.330@25# 0.3206@25# 0.300@26# 0.273@26# 0.277@26# 0.2725@26#

3 0.1 0.308@24# 0.271@24# 0.282@24# 0.2764@24# 0.253@25# 0.235@25# 0.236@25# 0.2337@25#

3 1 0.135@23# 0.122@23# 0.126@23# 0.1258@23# 0.111@24# 0.106@24# 0.105@24# 0.1053@24#

3 10 0.227@23# 0.214@23# 0.215@23# 0.2139@23# 0.186@24# 0.179@24# 0.178@24# 0.1785@24#

3 100 0.247@23# 0.234@23# 0.233@23# 0.2324@23# 0.202@24# 0.195@24# 0.194@24# 0.1939@24#
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Hereb andw are given by~20! and ~21!, respectively. The
width s is a function of« andg, which tends to unity in the
limit «→` for all coupling constants. For« going to zero,
the width approaches a finite value for allg exceptg51,
wheres vanishes. Sincew simultaneously vanishes, the trial
function ~19! becomes a step function jumping aty50:

Q~0!~x,y!5H 1 if y.0

0 if y50

21 otherwise.

~53!

However, the numerically exact eigenfunctions do not show
this behavior. They rather keep a finite width for all coupling
strengths in the strongly anisotropic limit. Forg.1 and all
« the profile is in qualitative agreement with that of the
Kramers-Langer function~51!. The first-order correction
~34! quantitatively agrees with the numerical results.

Figure 8 shows a comparison of the profiles of the nu-
merically exact eigenfunctionQ(x,y), the Kramers-Langer
function ~19!, and the perturbation expansion~34!. It is in-

teresting that the shape of the true eigenfunction agrees quite
well with an error function even forg,1 and«→0, i.e.,
also in cases when both the Kramers-Langer ratelKL and the
Rayleigh quotientl (1) fail grossly. Figure 9 shows that in
this case, the profile ofQ(x,y) coincides surprisingly well
with that given by~51! though the stochastic and the deter-
ministic separatrices differ very much@see Fig. 6~c!#. Thus
one can conclude that if the coupling is not too weak
0.5<g,1, the main reason for the breakdown of the
Kramers-Langer theory is the different location of the deter-
ministic and stochastic separatrices in the strongly aniso-
tropic limit and their different respective slopes at the saddle

FIG. 2. Relative errors, 100% @~approximate!
2~exact!/~exact!#, for the different approximate expressions for the
least nonvanishing eigenvalue. The solid and the dashed lines show
the errors of the Kramers-Langer formula@Eq. ~23!# and of the
Rayleigh quotient@Eq. ~29!# including the first-order corrections,
respectively.~a! E55 and g52,3; ~b! E57.5 andg51.5,2; ~c!
E510 andg52,10.

TABLE III. Scalar productN05(Q(0) ,Q(0)), as well as a com-
parison between the Rayleigh quotient@Eq. ~27!# evaluated with
N051, N0l

(1), and the numerically exact resultsl for the least
nonvanishing eigenvalue of the Smoluchowski operator~5! for
E52.5.

g « N0 N0l
(1) l

0.5 0.1@22# 0.92 0.130@21# 0.6929@24#

0.5 0.1@21# 0.92 0.132@21# 0.6768@23#

0.5 0.1 0.91 0.148@21# 0.5529@22#

0.5 1 0.90 0.213@21# 0.2046@21#

0.5 10 0.89 0.288@21# 0.3078@21#

0.5 100 0.89 0.310@21# 0.3321@21#

1 0.1@22# 0.96 0.323@23# 0.5686@24#

1 0.1@21# 0.95 0.164@22# 0.5567@23#

1 0.1 0.93 0.686@22# 0.4648@22#

1 1 0.92 0.187@21# 0.1904@21#

1 10 0.91 0.287@21# 0.3065@21#

1 100 0.91 0.310@21# 0.3321@21#

1.5 0.1@22# 0.94 0.668@24# 0.4963@24#

1.5 0.1@21# 0.94 0.644@23# 0.4876@23#

1.5 0.1 0.93 0.485@22# 0.4173@22#

1.5 1 0.92 0.177@21# 0.1839@21#

1.5 10 0.91 0.286@21# 0.3060@21#

1.5 100 0.91 0.310@21# 0.3321@21#

2 0.1@22# 0.93 0.519@24# 0.4559@24#

2 0.1@21# 0.93 0.507@23# 0.4489@23#

2 0.1 0.93 0.417@22# 0.3905@22#

2 1 0.92 0.172@21# 0.1803@21#

2 10 0.92 0.286@21# 0.3057@21#

2 100 0.91 0.310@21# 0.3321@21#

3 0.1@22# 0.93 0.426@24# 0.4145@24#

3 0.1@21# 0.93 0.420@23# 0.4090@23#

3 0.1 0.93 0.363@22# 0.3622@22#

3 1 0.92 0.167@21# 0.1764@21#

3 10 0.92 0.286@21# 0.3055@21#

3 100 0.92 0.310@21# 0.3321@21#
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point of the potential. Only in the limit of weak coupling
g→0 is the shape of the true eigenfunction seen to be quite
different from an error function following from the Kramers-
Langer theory@see Fig. 9~b!#. As we showed in another pa-
per@13#, with g going to zero the spectrum of eigenvalues of

the Smoluchowski operator becomes very similar to that of
the harmonic oscillator even though«.1, and therefore the
rate description is inapplicable in this case.

V. CONCLUSION

In this paper we discussed the validity of the Kramers-
Langer theory by a comparison with numerical results for the
least nonvanishing eigenvalue and the corresponding eigen-
function. The investigation was performed for a reactive
mode that is coupled to a relaxation mode and a heat bath.
The dynamics of both modes are strongly damped such that
inertial effects can safely be neglected and a two-
dimensional Smoluchowski equation describes the process.
Yet the relaxation times of the reactive and the relaxational
modes may differ, leading to an anisotropy in the respective
diffusion constants. Depending on the ratio of the diffusion
constants, i.e., the anisotropy parameter«, the coupling con-
stantg of the two modes, and the dimensionless temperature
D of the heat bath, the system belongs to either the relax-

FIG. 3. Border lines@Eq. ~50!# of applicability of the Kramers-
Langer theory as a function of« and g. ~a! E55 and
q510,20,40;~b! q520 andE52.5,5,10.

FIG. 4. EigenfunctionQ(x,y) corresponding to the least nonvanishing eigenvaluel1 for E55 andg50.5. ~a! «510; ~b! «51; ~c!
«50.1; ~d! «50.01.

FIG. 5. Location of the stochastic separatrix in the vicinity of
the saddle point forE55, g53, and«50.01,1,100.
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ational or the rate regime. The latter can further be subdi-
vided into the anisotropic and the Kramers-Langer regime.

The relaxational regime is characterized by a small cou-
pling constantg such that the reactive and the relaxational
modes are almost decoupled. The long-time behavior in this
regime is determined by a set of approximately equally
spaced low-lying eigenvalues. On the contrary, at larger val-
ues ofg, i.e., in the two other regimes, the long-time behav-
ior is determined by the barrier crossing process leading to a
least nonvanishing eigenvalue that is separated from all
larger ones by an exponentially large gap. The precise loca-
tion of the crossover between the relaxational regime and the
rate regime as a function ofD, «, andg has not yet been
investigated systematically. Results from@13# clearly indi-

cate that for fixedD the critical value ofg where the cross-
over takes place decreases with increasing«. Since the tran-
sition rate characterizing the barrier crossing process and
hence the corresponding eigenvalue is exponentially small in
the inverse temperatureD, the critical value ofg must also
be exponentially small inD.

The Kramers-Langer regime extends to large values of
« and g. HenceD is the relevant small parameter in the
Kramers-Langer regime. In this whole regime, the least non-
vanishing eigenvalue is determined by the Kramers-Langer
rate formula ~23!. Possible deviations come from finite-
barrier corrections and can be accounted for by the Rayleigh
quotientl (1) @see Eq.~27!#, which is based on the unper-
turbed Kramers functionQ(0)(x,y) given in ~19! as a trial
function. A further improvement of the eigenvalue, namely,
up to the order of the third power of the inverse barrier
height, can be obtained when the Rayleigh quotient is evalu-
ated with the improved eigenfunctionQ(0)(x,y)

FIG. 6. Location of the stochastic separatrix forE55 and
g50.5. The solid and the dashed lines represent the numerically
exact results and the deterministic separatrix@Eq. ~37!#, respec-
tively. The dot-dashed lines show the perturbation expansion@Eqs.
~34! and ~35!#. ~a! «51; ~b! «50.1; ~c! «50.01.

FIG. 7. Same as in Fig. 6, but forg50.1.
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1Q(1)(x,y) given by~19! and~31!. However, we did not con-
sider this here.

Using a self-consistent criterion, we correctly predicted
the transition regime where the Kramers-Langer theory loses
its validity and the anisotropy regime is reached when the
coupling constant is decreased at a sufficiently small value of
«. The criterion is not reliable at yet smaller values ofg,
where it indicates a spurious recovery of the Kramers-Langer
theory. Within the transition regime the Rayleigh quotient
with the Kramers-Langer trial function still gives a reliable
value for the least nonvanishing eigenvalue. This is no
longer the case for parameter values within the anisotropic
regime.

Corrected eigenfunctions were obtained by means of a

perturbation theory about the unperturbed case of a harmonic
barrier. They have a curved node line that is rotated relative
to the node of the unperturbed Kramers function. Both the
rotation and the curvature quantitatively describe the differ-
ence between the stochastic and the deterministic separatrix
both in the Kramers-Langer and the transition regime.

Yet another important feature is the form of the eigen-
function transversal to its node. From the result of the first-
order perturbation theory one finds that this form can be
written as an error function. It is interesting to note that the
numerically exact eigenfunctions show the error function
profile in quite a large region of parameter values, even
deeply inside the anisotropic regime where the Kramers-
Langer theory and also the perturbation theory completely
fail. This observation suggests a simple ansatz for the eigen-
function belonging to the least nonvanishing eigenvalue
reading

Q~x,y!5A2

pE0
ax1cy

duexpH 2
1

2
u2J , ~54!

wherea and c are free parameters that have to be chosen
such that the Rayleigh quotient is minimal. In this way we
expect to obtain good results for the least nonvanishing ei-
genvalue, except for a too low temperature, in which case the
ansatz has to be modified by taking into account the curva-
ture of the stochastic separatrix. In the relaxational regime,
whereg is extremely small, we also do not expect~54! to
hold. There a polynomial iny seems to be a more appropri-
ate ansatz for the trial function.

FIG. 8. Profiles of the eigenfunctionQ(x,y) for E55 and
«50.01. The solid lines show the numerically exact results. The
dashed and the dot-dashed lines show the Kramers-Langer function
@Eq. ~19!# and the perturbation expansion@Eq. ~34!#, respectively.
~a! g52; ~b! g51.5; ~c! g51.

FIG. 9. Same as in Fig. 8, but forg,1. ~a! g50.5; ~b!
g50.1.
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APPENDIX

The aim of this Appendix is to give the matrix represen-
tation of the Hamiltonian~43! in the basis~48! and further to
show a way of determining the free parameterv. For nota-
tional simplicity we rewrite the problem in the form

~2]xx
2 1v01v2x

21v4x
41v6x

6!xm5Emxm , ~A1!

S 2]xx
2 1

V2

4
x22

V

2 D u i &5V i u i &,

whereEm5mm /D andV5v/D, while the coefficientsvm
of the Schro¨dinger potential are determined by those of
U(x) andD, reading

v05
1

2D
, v25

1

4D2 2
3

2D
, v452

1

2D2 , v65
1

4D2 .

The matrix representation of~A1! in the basisu i & can be
found easily if one uses the well-known relationships of
harmonic-oscillator eigenfunctions

^ i u j &5d i , j ,

xu i &5
1

AV
@Ai u i21&1Ai11u i11&],

]xu i &5
1

2
AV@Ai u i21&2Ai11u i11&]. ~A2!

The resulting matrix has a band structure, where the diago-
nals are given by

Hn,n5v01S V

4
1
v2
V D ~112n!1

3v4
V2 ~112n12n2!

1
5v6
V3 ~318n16n214n3!, ~A3!

Hn,n225Hn22,n5An~n21!F2
V

4
1
v2
V

1
2v4
V2 ~2n21!

1
15v6
V3 ~12n1n2!G ,

Hn,n245Hn24,n5An~n21!~n22!~n23!

3F v4V2 1
3v6
V3 ~2n23!G ,

Hn,n265Hn26,n5
v6
V3 @n~n21!~n22!~n23!

3~n24!~n25!#1/2,

while the remaining matrix elements are equal to zero.
It is clear that neitherEm nor xm is a function ofV. As

we are unable, however, to handle the infinite expansion in
~48!, we have to truncate it at some finitei5M21. Then the
resulting approximationsEm

M and xm
M of the eigenfunctions

and eigenvalues depend onV. However, the parameterV
can be optimized to yield good approximations of the eigen-
values and eigenfunctions. The upper bound property of the
Rayleigh-Ritz method yields the following inequality for the
sum of the true and approximated eigenvalues:

(
m50

M21

Em< (
m50

M21

Em
M5 (

m50

M21

Hm,m . ~A4!

Thus minimizing the trace of the Hamiltonian operator in the
basis of scaled harmonic-oscillator eigenfunctions provides
one with a minimal average error of the eigenvaluesEM

m and,
consequently, a reasonable choice of the free parameter for a
given number of basis functionM . When applied to~A3!,
this yields, after some lengthy but simple algebra, a polyno-
mial of the form@26#

V424v2V
228v4~2M11/M !V260v6~M

212!50,
~A5!

which is easily solved forV whenM is large:

V5~60v6M
2!1/4. ~A6!

Returning in~A6! to the original notation, one immediately
obtains

v5~15D2M2!1/4. ~A7!
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